Normalized defining polynomial
\( x^{20} - 3 x^{19} - 7 x^{18} + 11 x^{17} + 9 x^{16} + 226 x^{15} - 962 x^{14} + 2140 x^{13} - 4019 x^{12} + 5171 x^{11} + 1351 x^{10} - 16779 x^{9} + 33795 x^{8} - 15670 x^{7} - 17818 x^{6} + 17486 x^{5} - 5419 x^{4} + 35 x^{3} + 279 x^{2} - 27 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(183584292633496284375040000000000=2^{20}\cdot 5^{10}\cdot 13^{4}\cdot 29^{4}\cdot 31^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} + \frac{8}{43} a^{17} - \frac{2}{43} a^{16} + \frac{13}{43} a^{15} + \frac{17}{43} a^{14} - \frac{21}{43} a^{13} + \frac{19}{43} a^{12} + \frac{7}{43} a^{11} - \frac{15}{43} a^{10} - \frac{4}{43} a^{9} + \frac{15}{43} a^{8} + \frac{15}{43} a^{7} - \frac{8}{43} a^{6} - \frac{18}{43} a^{5} + \frac{20}{43} a^{4} - \frac{21}{43} a^{3} + \frac{15}{43} a + \frac{14}{43}$, $\frac{1}{456268889392888183983282396622004337684001} a^{19} - \frac{2640651653661097228402235056938934976283}{456268889392888183983282396622004337684001} a^{18} + \frac{71903945899149461037402979903321782252551}{456268889392888183983282396622004337684001} a^{17} - \frac{210358578555429285511187293018035224823196}{456268889392888183983282396622004337684001} a^{16} + \frac{187579852506851061808948430957107962579898}{456268889392888183983282396622004337684001} a^{15} + \frac{210813853517515270645918905197591360901342}{456268889392888183983282396622004337684001} a^{14} - \frac{38759879113381442978827507184105392265338}{456268889392888183983282396622004337684001} a^{13} + \frac{132817828857031099250419533547034511439088}{456268889392888183983282396622004337684001} a^{12} - \frac{209345147795622932866490641732036696989183}{456268889392888183983282396622004337684001} a^{11} - \frac{185766014021688604083604840987046772902386}{456268889392888183983282396622004337684001} a^{10} + \frac{219912733362553517835428751930464274123704}{456268889392888183983282396622004337684001} a^{9} + \frac{167150810143001343277739679068951985092369}{456268889392888183983282396622004337684001} a^{8} + \frac{100761237963063356862771706027247107126590}{456268889392888183983282396622004337684001} a^{7} + \frac{194044082616262235576994306804408569569015}{456268889392888183983282396622004337684001} a^{6} + \frac{190986569097548690184504563107723085094605}{456268889392888183983282396622004337684001} a^{5} + \frac{115637515166480625515960636477397052394721}{456268889392888183983282396622004337684001} a^{4} - \frac{129314279078234611256904888007635947751607}{456268889392888183983282396622004337684001} a^{3} + \frac{30759483464346949419721905412563952960447}{456268889392888183983282396622004337684001} a^{2} - \frac{197597151249604097915553600190935368951574}{456268889392888183983282396622004337684001} a + \frac{22584262602896799685904794502874115323740}{456268889392888183983282396622004337684001}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 411620294.282 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 228 conjugacy class representatives for t20n1028 are not computed |
| Character table for t20n1028 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.109268775200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $13$ | 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 29.3.2.1 | $x^{3} - 29$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $31$ | 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.4.0.1 | $x^{4} - 2 x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 31.6.5.4 | $x^{6} + 217$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |