Normalized defining polynomial
\( x^{20} - 3 x^{19} - x^{18} + 109 x^{17} - 612 x^{16} + 1068 x^{15} + 2220 x^{14} - 21632 x^{13} + 59993 x^{12} - 51366 x^{11} - 121445 x^{10} + 585829 x^{9} - 1248062 x^{8} + 1649663 x^{7} - 1840394 x^{6} + 1693891 x^{5} - 903700 x^{4} + 468496 x^{3} - 193979 x^{2} - 389432 x + 542881 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1767246164450779958943837335205078125=5^{14}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{15} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{17} - \frac{1}{5} a^{15} - \frac{1}{5} a^{14} + \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{18} - \frac{1}{5} a^{13} + \frac{1}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{8} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5943245668465143442213505463925469993325500005201876455620218645} a^{19} + \frac{194234116309521958080412014174054586874556018204432182667551769}{5943245668465143442213505463925469993325500005201876455620218645} a^{18} - \frac{37728562555721407799649645929313528642194712481160142962711713}{1188649133693028688442701092785093998665100001040375291124043729} a^{17} - \frac{126664005605943413160180265246348322980200134338709823681837526}{5943245668465143442213505463925469993325500005201876455620218645} a^{16} + \frac{510066618550608045171745214780092860576438312049062234016093189}{5943245668465143442213505463925469993325500005201876455620218645} a^{15} - \frac{17176631127616072274808601005888920113012498448052244121709369}{204939505809142877317707084962947241149155172593168153642076505} a^{14} + \frac{2382782743483805588698032604961103239816488584536057519902609343}{5943245668465143442213505463925469993325500005201876455620218645} a^{13} + \frac{2959075967830104869110770229331207484236360646589127367742544503}{5943245668465143442213505463925469993325500005201876455620218645} a^{12} + \frac{2700618449608995696901207446034844796778762576849398618573948069}{5943245668465143442213505463925469993325500005201876455620218645} a^{11} + \frac{1766956563074840715635916893650170550199149524208088584044584263}{5943245668465143442213505463925469993325500005201876455620218645} a^{10} - \frac{809242975231794339503659100516166706583534236088803778852016388}{5943245668465143442213505463925469993325500005201876455620218645} a^{9} - \frac{162646010975482386479420713492626080427221915223946205671625102}{5943245668465143442213505463925469993325500005201876455620218645} a^{8} - \frac{515989925394569706309253974720765622025945435088779202712898512}{1188649133693028688442701092785093998665100001040375291124043729} a^{7} - \frac{42535621646967413120571210341095527260659036338030014079286673}{204939505809142877317707084962947241149155172593168153642076505} a^{6} - \frac{918626053649550286313690245717466233525060584480588660094008042}{5943245668465143442213505463925469993325500005201876455620218645} a^{5} - \frac{2377523168532704160032261808755101558603637469273796035431899572}{5943245668465143442213505463925469993325500005201876455620218645} a^{4} - \frac{2348300449182505461684032639106827460393112390306589884736696259}{5943245668465143442213505463925469993325500005201876455620218645} a^{3} - \frac{157463160458877094743451146742106461552338689645955650398729303}{457172743728087957093346574148113076409653846553990496586170665} a^{2} - \frac{1989503012585286245118047144931348622780080812601660292872932162}{5943245668465143442213505463925469993325500005201876455620218645} a + \frac{1488707026267824769740514631467828543482071930979971908350323051}{5943245668465143442213505463925469993325500005201876455620218645}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30722930196.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||