Normalized defining polynomial
\( x^{20} - 3 x^{19} - 7 x^{18} - 36 x^{17} + 295 x^{16} - 291 x^{15} - 143 x^{14} + 558 x^{13} - 7445 x^{12} + 15971 x^{11} - 17544 x^{10} + 9076 x^{9} + 21514 x^{8} - 37750 x^{7} + 28608 x^{6} - 22919 x^{5} - 4516 x^{4} + 28591 x^{3} - 11528 x^{2} - 4741 x + 1921 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17662414836314393569396972656250000=2^{4}\cdot 5^{18}\cdot 11^{4}\cdot 71^{4}\cdot 167^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 71, 167$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{10} a^{18} - \frac{1}{2} a^{17} + \frac{1}{5} a^{16} - \frac{1}{2} a^{15} + \frac{3}{10} a^{14} - \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{11} - \frac{1}{10} a^{10} - \frac{1}{10} a^{9} - \frac{1}{10} a^{8} - \frac{1}{10} a^{7} - \frac{3}{10} a^{6} - \frac{3}{10} a^{5} - \frac{3}{10} a^{4} - \frac{3}{10} a^{2} - \frac{3}{10} a + \frac{1}{10}$, $\frac{1}{57905252530357864855685145235448290542200804808890} a^{19} + \frac{131444717021707045401352458934991221706282161267}{11581050506071572971137029047089658108440160961778} a^{18} - \frac{7032352741693883665555135650311945755663732458329}{28952626265178932427842572617724145271100402404445} a^{17} - \frac{2967691371295764411937099939646238546798108806487}{11581050506071572971137029047089658108440160961778} a^{16} + \frac{11739660245311511305584885975458203976387839523673}{57905252530357864855685145235448290542200804808890} a^{15} - \frac{10514112265224148252844736012698274694621894338541}{28952626265178932427842572617724145271100402404445} a^{14} - \frac{8590518994951585297637003208531466213092631513711}{28952626265178932427842572617724145271100402404445} a^{13} + \frac{5215616734642843983070102647849763726964978680227}{28952626265178932427842572617724145271100402404445} a^{12} + \frac{28822703422744977009298617787435679932859525787359}{57905252530357864855685145235448290542200804808890} a^{11} - \frac{21533505371580258708279409076606457112906081095051}{57905252530357864855685145235448290542200804808890} a^{10} + \frac{20977544092384307000784888195253704334617429115779}{57905252530357864855685145235448290542200804808890} a^{9} + \frac{22277663687780296847240943154724238715045148818759}{57905252530357864855685145235448290542200804808890} a^{8} + \frac{19483541878760661165918701894730339922929946068677}{57905252530357864855685145235448290542200804808890} a^{7} + \frac{12264544308240587697355016385125244027598454530337}{57905252530357864855685145235448290542200804808890} a^{6} + \frac{2458134250690257317219976032270514420836510662947}{57905252530357864855685145235448290542200804808890} a^{5} + \frac{2229996444028854425413700310254365449521647417914}{5790525253035786485568514523544829054220080480889} a^{4} + \frac{11115347087140129162227095947184211791435716385927}{57905252530357864855685145235448290542200804808890} a^{3} - \frac{22284333971392661409651131386652297812581159808353}{57905252530357864855685145235448290542200804808890} a^{2} - \frac{27038588657031577614309918809642769258655325488619}{57905252530357864855685145235448290542200804808890} a + \frac{858936656800675831545915094107162175136763798393}{5790525253035786485568514523544829054220080480889}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5260322938.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 928972800 |
| The 139 conjugacy class representatives for t20n1100 are not computed |
| Character table for t20n1100 is not computed |
Intermediate fields
| 10.10.6645000909765625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 5.10.16.14 | $x^{10} + 20 x^{9} + 10 x^{8} + 10 x^{7} + 15 x^{6} + 15 x^{5} + 5 x^{4} + 15 x^{3} + 5 x^{2} + 20 x + 7$ | $5$ | $2$ | $16$ | $F_5$ | $[2]^{4}$ | |
| $11$ | 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 11.6.0.1 | $x^{6} + x^{2} - 2 x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.8.0.1 | $x^{8} - 7 x + 13$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 167.4.2.2 | $x^{4} - 167 x^{2} + 139445$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 167.4.2.2 | $x^{4} - 167 x^{2} + 139445$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |