Normalized defining polynomial
\( x^{20} - 8 x^{19} + 38 x^{18} - 226 x^{17} + 945 x^{16} - 3205 x^{15} + 12198 x^{14} - 33416 x^{13} + 80512 x^{12} - 229690 x^{11} + 454875 x^{10} - 1064806 x^{9} + 3406720 x^{8} - 7442088 x^{7} + 16577353 x^{6} - 33069267 x^{5} + 31934522 x^{4} - 3483430 x^{3} - 13841592 x^{2} + 6355544 x - 417919 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1753321685810638349237472141064453125=3^{10}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{13} - \frac{1}{9} a^{12} - \frac{2}{9} a^{11} - \frac{2}{9} a^{10} + \frac{4}{9} a^{9} + \frac{1}{3} a^{8} - \frac{2}{9} a^{7} - \frac{2}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{1}{3} a + \frac{1}{9}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{2}{9} a^{11} - \frac{2}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{9} a^{8} + \frac{4}{9} a^{7} - \frac{1}{3} a^{4} - \frac{1}{9} a^{3} + \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{9} a^{17} - \frac{1}{9} a^{14} - \frac{1}{9} a^{12} - \frac{4}{9} a^{10} - \frac{1}{3} a^{9} + \frac{1}{9} a^{8} + \frac{2}{9} a^{7} + \frac{2}{9} a^{6} + \frac{2}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{9} a^{2} - \frac{1}{9}$, $\frac{1}{44631} a^{18} - \frac{112}{14877} a^{17} + \frac{1696}{44631} a^{16} - \frac{1751}{44631} a^{15} + \frac{7063}{44631} a^{14} - \frac{2159}{14877} a^{13} + \frac{6788}{44631} a^{12} + \frac{17549}{44631} a^{11} - \frac{761}{4959} a^{10} + \frac{728}{1653} a^{9} - \frac{3676}{14877} a^{8} + \frac{13910}{44631} a^{7} + \frac{21200}{44631} a^{6} - \frac{308}{1539} a^{5} + \frac{5614}{14877} a^{4} + \frac{17128}{44631} a^{3} + \frac{9760}{44631} a^{2} + \frac{2899}{14877} a + \frac{529}{1539}$, $\frac{1}{77540301613277196476747162866705160670162956180112054584395029} a^{19} + \frac{725009322489477956910996307162541206109428267092819078940}{77540301613277196476747162866705160670162956180112054584395029} a^{18} + \frac{4478187084028909202279456659285921881658103672102839649195}{120967709225081429760916010712488550187461710109379180318869} a^{17} + \frac{2293212565310576372019626971987772389059390526716550874509394}{77540301613277196476747162866705160670162956180112054584395029} a^{16} - \frac{3520998513563703303867182014372539206388741224808387825560869}{77540301613277196476747162866705160670162956180112054584395029} a^{15} + \frac{8966603629188015177586665749161752449168974386892686227797}{116252326256787401014613437581267107451518674932701731011087} a^{14} - \frac{9700654969466488057436291837010317376999687441944762329489084}{77540301613277196476747162866705160670162956180112054584395029} a^{13} - \frac{4221341651328282186795589765702306681176755047573929258348545}{77540301613277196476747162866705160670162956180112054584395029} a^{12} + \frac{35932740512858637476405519776866288391280396124375138242337800}{77540301613277196476747162866705160670162956180112054584395029} a^{11} + \frac{640239427088833358627544453920937259724857334099672835666464}{8615589068141910719638573651856128963351439575568006064932781} a^{10} - \frac{9853928174309750144632291069482666687904307563718040050219191}{25846767204425732158915720955568386890054318726704018194798343} a^{9} - \frac{10826403116352387014748254567015719954037148319092461122060756}{77540301613277196476747162866705160670162956180112054584395029} a^{8} - \frac{13417693377849345561447214343082463272781710371760446455592678}{77540301613277196476747162866705160670162956180112054584395029} a^{7} + \frac{26338400708799621475507656512742071695332950901127824323361166}{77540301613277196476747162866705160670162956180112054584395029} a^{6} + \frac{9188062839520675298967862398744904281819402178520469611288030}{77540301613277196476747162866705160670162956180112054584395029} a^{5} + \frac{22905722102150522868174967777647677085495387249648267484683910}{77540301613277196476747162866705160670162956180112054584395029} a^{4} - \frac{10393813080996267579260450378708786983481822258438479383362359}{77540301613277196476747162866705160670162956180112054584395029} a^{3} + \frac{27839894869642235505440149518420692717739047460502709925197836}{77540301613277196476747162866705160670162956180112054584395029} a^{2} - \frac{4784409678545119708820270869659109034182787931408919047906631}{77540301613277196476747162866705160670162956180112054584395029} a + \frac{42210583657029332589468324484188809769064909612064739572056}{140726500205584748596637319177323340599206817023796832276579}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33308369752.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||