Normalized defining polynomial
\( x^{20} - 5 x^{19} + 11 x^{18} + 22 x^{17} - 314 x^{16} + 918 x^{15} - 919 x^{14} - 2712 x^{13} + 13715 x^{12} - 20534 x^{11} + 3142 x^{10} + 51084 x^{9} - 138550 x^{8} + 137657 x^{7} + 56747 x^{6} - 131853 x^{5} - 148436 x^{4} - 34890 x^{3} + 173745 x^{2} - 36765 x - 8469 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1753321685810638349237472141064453125=3^{10}\cdot 5^{11}\cdot 239^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 239$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{15} a^{18} + \frac{1}{15} a^{17} + \frac{1}{15} a^{16} + \frac{2}{15} a^{15} + \frac{7}{15} a^{14} - \frac{2}{15} a^{13} + \frac{2}{15} a^{12} + \frac{2}{15} a^{11} + \frac{1}{3} a^{10} - \frac{1}{15} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{3} a^{6} - \frac{4}{15} a^{5} + \frac{1}{5} a^{4} - \frac{1}{15} a^{3} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{10217199550268764055143797379019540597760213927704202765} a^{19} + \frac{76836438977875746608478450656046135507627153509650277}{3405733183422921351714599126339846865920071309234734255} a^{18} - \frac{694696430225252455016483208661167521978303622072001639}{10217199550268764055143797379019540597760213927704202765} a^{17} - \frac{139068945342217436617536891445810068507890015318125348}{10217199550268764055143797379019540597760213927704202765} a^{16} + \frac{4131710927050846330022962078458802104655474653111729017}{10217199550268764055143797379019540597760213927704202765} a^{15} + \frac{4732404687466238879808627746089016504637346706679162523}{10217199550268764055143797379019540597760213927704202765} a^{14} + \frac{1750009575243915479173424911971462089477743591214719207}{10217199550268764055143797379019540597760213927704202765} a^{13} - \frac{1506321529274201496933174949466430322229654379491565163}{10217199550268764055143797379019540597760213927704202765} a^{12} - \frac{72242025022890213811947638454748061283907455767965097}{227048878894861423447639941755989791061338087282315617} a^{11} - \frac{2810259642018024632831352843078338024712597678703275536}{10217199550268764055143797379019540597760213927704202765} a^{10} - \frac{236308191871268202053460974173739744998089467329564916}{1135244394474307117238199708779948955306690436411578085} a^{9} + \frac{1656014698012004893524142043245443866201072751400821712}{3405733183422921351714599126339846865920071309234734255} a^{8} + \frac{379663628542598006258656070150439380212870867465937416}{2043439910053752811028759475803908119552042785540840553} a^{7} - \frac{1018864181047897635044065223325205699474071065215799008}{3405733183422921351714599126339846865920071309234734255} a^{6} + \frac{4770975203407411037560986174726200352636616590868668968}{10217199550268764055143797379019540597760213927704202765} a^{5} - \frac{3396371745571908530390866478145983968783380840236972696}{10217199550268764055143797379019540597760213927704202765} a^{4} + \frac{80591251274892287945804500962518424934609184452383814}{681146636684584270342919825267969373184014261846946851} a^{3} + \frac{502210314334899009199459353286890403431058292097757124}{1135244394474307117238199708779948955306690436411578085} a^{2} + \frac{256485109248590359869194693228097053383928045466238329}{1135244394474307117238199708779948955306690436411578085} a + \frac{64390261156707732164965799045130962101555818042353366}{227048878894861423447639941755989791061338087282315617}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30328116268.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 100 conjugacy class representatives for t20n426 are not computed |
| Character table for t20n426 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.12852225.1, 10.10.825898437253125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 239 | Data not computed | ||||||