Normalized defining polynomial
\( x^{20} - 27 x^{18} - 153 x^{16} + 3788 x^{14} + 32832 x^{12} + 37230 x^{10} - 350829 x^{8} - 919719 x^{6} + 561246 x^{4} + 2748711 x^{2} + 571787 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1741167538834544763439794528727334912=2^{36}\cdot 83^{7}\cdot 983^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{83} a^{12} + \frac{14}{83} a^{10} - \frac{20}{83} a^{8} + \frac{31}{83} a^{6} + \frac{12}{83} a^{4} - \frac{19}{83} a^{2}$, $\frac{1}{83} a^{13} + \frac{14}{83} a^{11} - \frac{20}{83} a^{9} + \frac{31}{83} a^{7} + \frac{12}{83} a^{5} - \frac{19}{83} a^{3}$, $\frac{1}{83} a^{14} + \frac{33}{83} a^{10} - \frac{21}{83} a^{8} - \frac{7}{83} a^{6} - \frac{21}{83} a^{4} + \frac{17}{83} a^{2}$, $\frac{1}{83} a^{15} + \frac{33}{83} a^{11} - \frac{21}{83} a^{9} - \frac{7}{83} a^{7} - \frac{21}{83} a^{5} + \frac{17}{83} a^{3}$, $\frac{1}{83} a^{16} + \frac{15}{83} a^{10} - \frac{11}{83} a^{8} + \frac{35}{83} a^{6} + \frac{36}{83} a^{4} - \frac{37}{83} a^{2}$, $\frac{1}{83} a^{17} + \frac{15}{83} a^{11} - \frac{11}{83} a^{9} + \frac{35}{83} a^{7} + \frac{36}{83} a^{5} - \frac{37}{83} a^{3}$, $\frac{1}{2620446565163620443823} a^{18} + \frac{12835442574910824397}{2620446565163620443823} a^{16} + \frac{6091928883175971307}{2620446565163620443823} a^{14} - \frac{2270366783985027977}{2620446565163620443823} a^{12} - \frac{261470274095075741013}{2620446565163620443823} a^{10} + \frac{141333257224098482949}{2620446565163620443823} a^{8} - \frac{829069061342965925537}{2620446565163620443823} a^{6} + \frac{659093464947176577277}{2620446565163620443823} a^{4} + \frac{5837044265007707939}{31571645363417113781} a^{2} - \frac{81094414516047686}{380381269438760407}$, $\frac{1}{2620446565163620443823} a^{19} + \frac{12835442574910824397}{2620446565163620443823} a^{17} + \frac{6091928883175971307}{2620446565163620443823} a^{15} - \frac{2270366783985027977}{2620446565163620443823} a^{13} - \frac{261470274095075741013}{2620446565163620443823} a^{11} + \frac{141333257224098482949}{2620446565163620443823} a^{9} - \frac{829069061342965925537}{2620446565163620443823} a^{7} + \frac{659093464947176577277}{2620446565163620443823} a^{5} + \frac{5837044265007707939}{31571645363417113781} a^{3} - \frac{81094414516047686}{380381269438760407} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35805943286.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n807 are not computed |
| Character table for t20n807 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | $16{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $83$ | 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.6.3.2 | $x^{6} - 6889 x^{2} + 1715361$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 83.6.0.1 | $x^{6} - x + 34$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 983 | Data not computed | ||||||