Normalized defining polynomial
\( x^{20} + 80 x^{18} - 54002 x^{16} - 3480624 x^{14} + 566715315 x^{12} + 6739768564 x^{10} - 1371610846859 x^{8} + 8416391205200 x^{6} + 450513883311701 x^{4} + 701568715396758 x^{2} + 277717458830449 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17165941082918625907388507845862234378814751768576=2^{40}\cdot 11^{16}\cdot 23^{8}\cdot 199^{2}\cdot 331^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $289.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23, 199, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23} a^{14} + \frac{9}{23} a^{12} + \frac{7}{23} a^{10} - \frac{2}{23} a^{8} + \frac{11}{23} a^{6} - \frac{3}{23} a^{4}$, $\frac{1}{253} a^{15} + \frac{124}{253} a^{13} + \frac{30}{253} a^{11} - \frac{48}{253} a^{9} + \frac{34}{253} a^{7} + \frac{89}{253} a^{5}$, $\frac{1}{253} a^{16} + \frac{3}{253} a^{14} - \frac{47}{253} a^{12} + \frac{117}{253} a^{10} + \frac{1}{11} a^{8} + \frac{1}{11} a^{6} + \frac{10}{23} a^{4}$, $\frac{1}{253} a^{17} + \frac{87}{253} a^{13} + \frac{27}{253} a^{11} - \frac{86}{253} a^{9} - \frac{79}{253} a^{7} + \frac{96}{253} a^{5}$, $\frac{1}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{18} - \frac{7419772555905286559865436251337560356588313636045142926114777918251434}{4695038988979174132338230378964539335377248093130347086359563387045105783} a^{16} - \frac{528913000626916468883712589797568901191805417572429925387246786404145473}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{14} - \frac{2837254730468324801459484807003689434161018846533839200203132360679716296}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{12} + \frac{11906696932203707896795029432346423339925198159224387809954333408094833583}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{10} - \frac{22983633589614324138213176702252502925335497030667586275398122041699758168}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{8} - \frac{1586152143470669076304855260763592974097920326363319817528982711710573096}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{6} - \frac{1234603077790767906685648862322991194019938673097645918509643397862073573}{4695038988979174132338230378964539335377248093130347086359563387045105783} a^{4} + \frac{30601411837801823561276734079378249806869247164123158883565842292624860}{204132129955616266623401320824545188494662960570884655928676669001961121} a^{2} + \frac{44810674758652110816553405945354395791957948397861118874265281097}{3099062228903069222599421895345992629228665389954070289949394540709}$, $\frac{1}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{19} - \frac{7419772555905286559865436251337560356588313636045142926114777918251434}{4695038988979174132338230378964539335377248093130347086359563387045105783} a^{17} + \frac{83483389239932330986491372676066664292183464140224042398783220601737890}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{15} + \frac{21454468734250010926725272371117187996703873461401434855309391250553657103}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{13} - \frac{1942440022778340323892671442004949307700442219439073736947269421747711740}{4695038988979174132338230378964539335377248093130347086359563387045105783} a^{11} - \frac{733231424452151076262432732377077379417234328441158779172365120485995979}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{9} + \frac{19235325112002190119282079463340016252357701651866915087196037526489461246}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{7} - \frac{10722784036319819240814518994009270495294043956081719920604604010455353609}{51645428878770915455720534168609932689149729024433817949955197257496163613} a^{5} + \frac{30601411837801823561276734079378249806869247164123158883565842292624860}{204132129955616266623401320824545188494662960570884655928676669001961121} a^{3} + \frac{44810674758652110816553405945354395791957948397861118874265281097}{3099062228903069222599421895345992629228665389954070289949394540709} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14609277926100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 56 conjugacy class representatives for t20n331 are not computed |
| Character table for t20n331 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.2670699013250048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $199$ | $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{199}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.4.2.2 | $x^{4} - 199 x^{2} + 237606$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 199.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 331 | Data not computed | ||||||