Normalized defining polynomial
\( x^{20} + 48 x^{18} - 66884 x^{16} - 7164256 x^{14} + 490247200 x^{12} + 63743484160 x^{10} + 99168290752 x^{8} - 51749801951232 x^{6} - 623091135441152 x^{4} - 584275946368000 x^{2} + 2350270064813056 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17165941082918625907388507845862234378814751768576=2^{40}\cdot 11^{16}\cdot 23^{8}\cdot 199^{2}\cdot 331^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $289.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23, 199, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{64} a^{11} - \frac{1}{32} a^{9} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{704} a^{12} - \frac{1}{352} a^{10} + \frac{1}{88} a^{8} - \frac{1}{22} a^{6} - \frac{5}{44} a^{4} + \frac{1}{11} a^{2} + \frac{5}{11}$, $\frac{1}{1408} a^{13} - \frac{1}{704} a^{11} + \frac{1}{176} a^{9} + \frac{7}{176} a^{7} - \frac{5}{88} a^{5} - \frac{9}{44} a^{3} - \frac{3}{11} a$, $\frac{1}{1408} a^{14} + \frac{1}{352} a^{10} - \frac{1}{88} a^{8} + \frac{1}{44} a^{6} - \frac{3}{44} a^{4} - \frac{2}{11} a^{2} + \frac{5}{11}$, $\frac{1}{2816} a^{15} + \frac{1}{704} a^{11} + \frac{9}{352} a^{9} + \frac{1}{88} a^{7} + \frac{1}{11} a^{5} + \frac{7}{44} a^{3} - \frac{3}{11} a$, $\frac{1}{64768} a^{16} + \frac{1}{32384} a^{14} + \frac{1}{92} a^{10} - \frac{35}{4048} a^{8} - \frac{37}{1012} a^{6} + \frac{43}{506} a^{4} - \frac{1}{22} a^{2}$, $\frac{1}{129536} a^{17} + \frac{1}{64768} a^{15} + \frac{1}{184} a^{11} + \frac{109}{4048} a^{9} + \frac{179}{4048} a^{7} - \frac{167}{2024} a^{5} - \frac{1}{44} a^{3} - \frac{1}{2} a$, $\frac{1}{203109801718711281787176756611989099362894483975103938427012926976} a^{18} + \frac{143187479097643755900659954873709967556923636505634682641945}{50777450429677820446794189152997274840723620993775984606753231744} a^{16} + \frac{3599194358159364467473167270259855722261185556299337338652197}{12694362607419455111698547288249318710180905248443996151688307936} a^{14} + \frac{8864889326266576348636587845245276326262227057081405031043879}{25388725214838910223397094576498637420361810496887992303376615872} a^{12} + \frac{53864187957027927991229343629269955526057796789149793808472537}{12694362607419455111698547288249318710180905248443996151688307936} a^{10} + \frac{4738266056935983436365534187722180857981707099148264629183189}{1586795325927431888962318411031164838772613156055499518961038492} a^{8} - \frac{29252257934126398640896057680850173934441249874625497759707899}{1586795325927431888962318411031164838772613156055499518961038492} a^{6} - \frac{178318517598125983869139019495786451253504872053970905669646011}{1586795325927431888962318411031164838772613156055499518961038492} a^{4} + \frac{3292811841276524926897014033414334272334562417022588797402387}{17247775281819911836546939250338748247528403870168473032185201} a^{2} - \frac{41791404648635886414622194776683967384089978163247657774}{261849660414154030523416770413073649934391046929032975029}$, $\frac{1}{406219603437422563574353513223978198725788967950207876854025853952} a^{19} + \frac{143187479097643755900659954873709967556923636505634682641945}{101554900859355640893588378305994549681447241987551969213506463488} a^{17} + \frac{3599194358159364467473167270259855722261185556299337338652197}{25388725214838910223397094576498637420361810496887992303376615872} a^{15} + \frac{8864889326266576348636587845245276326262227057081405031043879}{50777450429677820446794189152997274840723620993775984606753231744} a^{13} + \frac{53864187957027927991229343629269955526057796789149793808472537}{25388725214838910223397094576498637420361810496887992303376615872} a^{11} - \frac{377745767254114038495117466006902486261226460617281821223526867}{12694362607419455111698547288249318710180905248443996151688307936} a^{9} + \frac{338194315613605174958787487396090861824270789264623884220843825}{6347181303709727555849273644124659355090452624221998075844153968} a^{7} + \frac{54595078470932997092860145815501189609912104239975993517653403}{793397662963715944481159205515582419386306578027749759480519246} a^{5} - \frac{10662151599266861982752911183510079702859279036123295437380427}{68991101127279647346187757001354992990113615480673892128740804} a^{3} - \frac{20895702324317943207311097388341983692044989081623828887}{261849660414154030523416770413073649934391046929032975029} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15271111019800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 56 conjugacy class representatives for t20n331 are not computed |
| Character table for t20n331 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.2670699013250048.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.3.1 | $x^{4} + 46$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $199$ | 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.4.2.2 | $x^{4} - 199 x^{2} + 237606$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 199.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 331 | Data not computed | ||||||