Properties

Label 20.8.17120604092...7369.1
Degree $20$
Signature $[8, 6]$
Discriminant $11^{16}\cdot 43^{2}\cdot 67^{4}$
Root discriminant $23.00$
Ramified primes $11, 43, 67$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T751

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-89, 509, -751, 57, 212, -836, 958, -190, 530, 231, -363, 114, -163, -29, 56, -31, 26, 11, -11, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 11*x^18 + 11*x^17 + 26*x^16 - 31*x^15 + 56*x^14 - 29*x^13 - 163*x^12 + 114*x^11 - 363*x^10 + 231*x^9 + 530*x^8 - 190*x^7 + 958*x^6 - 836*x^5 + 212*x^4 + 57*x^3 - 751*x^2 + 509*x - 89)
 
gp: K = bnfinit(x^20 - x^19 - 11*x^18 + 11*x^17 + 26*x^16 - 31*x^15 + 56*x^14 - 29*x^13 - 163*x^12 + 114*x^11 - 363*x^10 + 231*x^9 + 530*x^8 - 190*x^7 + 958*x^6 - 836*x^5 + 212*x^4 + 57*x^3 - 751*x^2 + 509*x - 89, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 11 x^{18} + 11 x^{17} + 26 x^{16} - 31 x^{15} + 56 x^{14} - 29 x^{13} - 163 x^{12} + 114 x^{11} - 363 x^{10} + 231 x^{9} + 530 x^{8} - 190 x^{7} + 958 x^{6} - 836 x^{5} + 212 x^{4} + 57 x^{3} - 751 x^{2} + 509 x - 89 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1712060409270190644695047369=11^{16}\cdot 43^{2}\cdot 67^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 43, 67$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{126788229546374548350217674049} a^{19} - \frac{38523151358626383845596358444}{126788229546374548350217674049} a^{18} - \frac{25872447927805251257918777848}{126788229546374548350217674049} a^{17} - \frac{14869345201767746719416991237}{126788229546374548350217674049} a^{16} - \frac{343288419142366294319642716}{1163194766480500443579978661} a^{15} - \frac{38812811823727189711169503586}{126788229546374548350217674049} a^{14} - \frac{53411743005281219087709856771}{126788229546374548350217674049} a^{13} - \frac{1642566215614245659367051410}{5512531719407589058705116263} a^{12} + \frac{52117646209348451131483403268}{126788229546374548350217674049} a^{11} - \frac{60504703840504575987785006017}{126788229546374548350217674049} a^{10} + \frac{13849437768375969264899248686}{126788229546374548350217674049} a^{9} + \frac{38815834711472057896648192086}{126788229546374548350217674049} a^{8} + \frac{33493490465289773432087674221}{126788229546374548350217674049} a^{7} - \frac{23286254411248794772872939463}{126788229546374548350217674049} a^{6} - \frac{14627903823292594260973684713}{126788229546374548350217674049} a^{5} + \frac{3400954063071056724495441692}{126788229546374548350217674049} a^{4} - \frac{36543512924133742874673490562}{126788229546374548350217674049} a^{3} + \frac{27947356659636682645161734890}{126788229546374548350217674049} a^{2} - \frac{43465545066176982077966687294}{126788229546374548350217674049} a - \frac{18478908082804590000115303958}{126788229546374548350217674049}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 830382.007701 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T751:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 81920
The 332 conjugacy class representatives for t20n751 are not computed
Character table for t20n751 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.10.617567936161.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
43Data not computed
$67$$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 4$$1$$1$$0$Trivial$[\ ]$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.1.2$x^{2} + 268$$2$$1$$1$$C_2$$[\ ]_{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.2.0.1$x^{2} - x + 12$$1$$2$$0$$C_2$$[\ ]^{2}$
67.4.3.1$x^{4} + 268$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$