Normalized defining polynomial
\( x^{20} - 7 x^{18} - x^{17} - 3 x^{16} - 16 x^{15} - 367 x^{14} + 1220 x^{13} - 645 x^{12} + 2504 x^{11} - 3687 x^{10} - 17015 x^{9} + 38818 x^{8} - 3507 x^{7} - 49759 x^{6} + 37703 x^{5} - 126 x^{4} - 644 x^{3} - 5506 x^{2} - 1071 x + 2161 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(169636009043774780412582107929=29^{2}\cdot 61^{6}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{249818272581148368775019677595555282147726241845} a^{19} + \frac{30434524971148022731083454696913913370936650262}{249818272581148368775019677595555282147726241845} a^{18} - \frac{111217564474136046147501278344657024395664493158}{249818272581148368775019677595555282147726241845} a^{17} - \frac{80229569158536604900049752801646618380977636577}{249818272581148368775019677595555282147726241845} a^{16} - \frac{41117991313823759496588107290144774491659901287}{249818272581148368775019677595555282147726241845} a^{15} - \frac{8320321150605052407498887460380637217513238754}{49963654516229673755003935519111056429545248369} a^{14} + \frac{65765612749422919820497067373987836211787456643}{249818272581148368775019677595555282147726241845} a^{13} - \frac{1952109280187705935626440367816282826072439658}{19216790198549874521155359815042714011363557065} a^{12} - \frac{43433557346208274175506119423252485940050866508}{249818272581148368775019677595555282147726241845} a^{11} - \frac{102198477355341239659149482628181106492284171897}{249818272581148368775019677595555282147726241845} a^{10} + \frac{97375807490557694529483188873493025379922123659}{249818272581148368775019677595555282147726241845} a^{9} - \frac{48949287149451721214719009217129857767286438587}{249818272581148368775019677595555282147726241845} a^{8} - \frac{116130333879953822549240664714245841078346210766}{249818272581148368775019677595555282147726241845} a^{7} - \frac{35227007957782535040906024405495852913215058099}{249818272581148368775019677595555282147726241845} a^{6} + \frac{48372792172269851665133591703754257252701993178}{249818272581148368775019677595555282147726241845} a^{5} + \frac{114388760709628338781790640264518180213777678784}{249818272581148368775019677595555282147726241845} a^{4} + \frac{90693808270168591926388476286911998391800447032}{249818272581148368775019677595555282147726241845} a^{3} + \frac{20459106940293060513893253655145419735182164677}{49963654516229673755003935519111056429545248369} a^{2} - \frac{39326451669727755080283237619615398629822958946}{249818272581148368775019677595555282147726241845} a + \frac{89790242258636188516864989716589870237533357527}{249818272581148368775019677595555282147726241845}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9825202.87992 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n664 are not computed |
| Character table for t20n664 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.411868922163077.1, 10.6.17007429581.1, 10.6.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 397 | Data not computed | ||||||