Normalized defining polynomial
\( x^{20} - 5 x^{19} + x^{18} + 46 x^{17} - 135 x^{16} + 57 x^{15} + 585 x^{14} - 1494 x^{13} + 857 x^{12} + 2779 x^{11} - 6943 x^{10} + 6010 x^{9} + 2194 x^{8} - 12272 x^{7} + 16092 x^{6} - 10924 x^{5} + 2376 x^{4} + 2400 x^{3} - 2240 x^{2} + 720 x - 80 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1607575865553562716800000000000=2^{16}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{12} + \frac{3}{10} a^{11} - \frac{1}{2} a^{9} - \frac{1}{10} a^{8} - \frac{3}{10} a^{7} + \frac{2}{5} a^{6} + \frac{3}{10} a^{5} - \frac{1}{10} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{10} a^{14} + \frac{3}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} - \frac{3}{10} a^{7} - \frac{1}{10} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{15} - \frac{1}{20} a^{14} - \frac{1}{20} a^{13} + \frac{3}{20} a^{11} - \frac{3}{20} a^{10} - \frac{1}{4} a^{9} - \frac{1}{5} a^{8} + \frac{7}{20} a^{7} + \frac{7}{20} a^{6} - \frac{9}{20} a^{5}$, $\frac{1}{20} a^{16} - \frac{1}{20} a^{13} - \frac{1}{20} a^{12} + \frac{3}{10} a^{11} - \frac{1}{10} a^{10} - \frac{1}{4} a^{9} - \frac{9}{20} a^{8} - \frac{9}{20} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{20} a^{17} - \frac{1}{20} a^{14} - \frac{1}{20} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{9}{20} a^{10} + \frac{7}{20} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{20} a^{6} - \frac{1}{5} a^{5} + \frac{1}{10} a^{4}$, $\frac{1}{2600} a^{18} - \frac{61}{2600} a^{17} + \frac{19}{2600} a^{16} - \frac{1}{52} a^{15} + \frac{113}{2600} a^{14} - \frac{41}{2600} a^{13} - \frac{193}{2600} a^{12} + \frac{411}{1300} a^{11} - \frac{1011}{2600} a^{10} + \frac{529}{2600} a^{9} + \frac{27}{200} a^{8} + \frac{441}{1300} a^{7} - \frac{303}{1300} a^{6} + \frac{99}{1300} a^{5} - \frac{19}{50} a^{4} - \frac{19}{65} a^{3} + \frac{8}{65} a^{2} + \frac{19}{65} a - \frac{29}{65}$, $\frac{1}{12394306137908398600} a^{19} + \frac{260122497942082}{1549288267238549825} a^{18} + \frac{36182585995416899}{1549288267238549825} a^{17} - \frac{60136588379095637}{12394306137908398600} a^{16} + \frac{164791210143673193}{12394306137908398600} a^{15} - \frac{21207434544283041}{619715306895419930} a^{14} + \frac{625384365166813}{619715306895419930} a^{13} - \frac{1150878618079881409}{12394306137908398600} a^{12} + \frac{65048507770974233}{12394306137908398600} a^{11} + \frac{2512118154023674881}{6197153068954199300} a^{10} - \frac{1363169410095859073}{6197153068954199300} a^{9} + \frac{6152899723591175319}{12394306137908398600} a^{8} - \frac{1265653599382691071}{6197153068954199300} a^{7} - \frac{17053017324456283}{1549288267238549825} a^{6} + \frac{669222631974986529}{6197153068954199300} a^{5} + \frac{400895390748608713}{1549288267238549825} a^{4} + \frac{58395424056771889}{123943061379083986} a^{3} - \frac{17707156394941735}{61971530689541993} a^{2} - \frac{102756034305841811}{309857653447709965} a - \frac{41385626331502488}{309857653447709965}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50967066.8569 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3469 | Data not computed | ||||||