Normalized defining polynomial
\( x^{20} - 7 x^{19} + 13 x^{18} + 8 x^{17} - 57 x^{16} + 181 x^{15} - 599 x^{14} + 1096 x^{13} - 1057 x^{12} + 1253 x^{11} - 2437 x^{10} + 2358 x^{9} - 414 x^{8} - 110 x^{7} - 220 x^{6} - 1530 x^{5} + 4320 x^{4} - 5000 x^{3} + 2200 x^{2} + 500 x - 500 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1607575865553562716800000000000=2^{16}\cdot 5^{11}\cdot 3469^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 3469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{14} - \frac{1}{10} a^{13} - \frac{1}{5} a^{12} + \frac{3}{10} a^{11} + \frac{3}{10} a^{10} + \frac{1}{10} a^{9} - \frac{2}{5} a^{8} - \frac{3}{10} a^{7} - \frac{1}{10} a^{6} - \frac{3}{10} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{10} a^{16} + \frac{3}{10} a^{13} + \frac{3}{10} a^{12} - \frac{2}{5} a^{10} + \frac{1}{10} a^{9} + \frac{1}{10} a^{8} - \frac{2}{5} a^{6} + \frac{3}{10} a^{5} + \frac{2}{5} a^{4}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{14} + \frac{1}{10} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{3}{10} a^{10} + \frac{3}{10} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{3}{10} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{50} a^{18} - \frac{1}{25} a^{17} - \frac{1}{25} a^{16} - \frac{1}{25} a^{15} - \frac{1}{25} a^{14} + \frac{1}{50} a^{13} + \frac{3}{25} a^{12} + \frac{3}{25} a^{11} + \frac{4}{25} a^{10} - \frac{7}{50} a^{9} + \frac{4}{25} a^{8} - \frac{11}{25} a^{7} + \frac{21}{50} a^{6} + \frac{3}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{786366367600754028049394150} a^{19} - \frac{494320496794060392840203}{157273273520150805609878830} a^{18} + \frac{14392612869835706516134489}{786366367600754028049394150} a^{17} - \frac{3540760449016297050506163}{393183183800377014024697075} a^{16} + \frac{14367364618559293644806362}{393183183800377014024697075} a^{15} - \frac{18451540673929036391499924}{393183183800377014024697075} a^{14} + \frac{124027610257566179051522489}{393183183800377014024697075} a^{13} - \frac{173659114670187805078404746}{393183183800377014024697075} a^{12} - \frac{2752449342577918129081657}{78636636760075402804939415} a^{11} - \frac{144284377920391982655385933}{393183183800377014024697075} a^{10} + \frac{48828578059824308933717987}{393183183800377014024697075} a^{9} - \frac{190219227395113403267702478}{393183183800377014024697075} a^{8} - \frac{97810414696905996389941943}{786366367600754028049394150} a^{7} - \frac{102313617673596419752286713}{786366367600754028049394150} a^{6} + \frac{61892834400273696394063013}{157273273520150805609878830} a^{5} + \frac{6499642745211809846635612}{78636636760075402804939415} a^{4} - \frac{15754172644136231874830764}{78636636760075402804939415} a^{3} - \frac{22962390514670142282797436}{78636636760075402804939415} a^{2} + \frac{4480314310959441586990172}{15727327352015080560987883} a - \frac{7335679058001481592866189}{15727327352015080560987883}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30582771.3695 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.9627168800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3469 | Data not computed | ||||||