Normalized defining polynomial
\( x^{20} - 3 x^{19} + 4 x^{18} - 3 x^{17} - 14 x^{16} - 43 x^{15} + 138 x^{14} - 406 x^{13} + 344 x^{12} - 15 x^{11} - 437 x^{10} + 599 x^{9} + 82 x^{8} + 227 x^{7} + 350 x^{6} - 405 x^{5} - 321 x^{4} + 39 x^{3} + 36 x^{2} - x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15835320149390464670771579317=23^{2}\cdot 401^{8}\cdot 44773\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 401, 44773$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} + \frac{1}{9} a^{15} - \frac{4}{9} a^{14} + \frac{2}{9} a^{13} - \frac{2}{9} a^{12} - \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{4}{9} a^{9} + \frac{4}{9} a^{8} - \frac{2}{9} a^{7} - \frac{1}{3} a^{5} - \frac{4}{9} a^{4} - \frac{1}{9} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a + \frac{4}{9}$, $\frac{1}{3094845078693726136890513} a^{19} - \frac{98350931714406899087030}{3094845078693726136890513} a^{18} + \frac{50756806197563180444653}{343871675410414015210057} a^{17} + \frac{372861578695370655587014}{3094845078693726136890513} a^{16} + \frac{377053177674156876379676}{3094845078693726136890513} a^{15} + \frac{1221214188079113248462624}{3094845078693726136890513} a^{14} + \frac{1084122964609665546151546}{3094845078693726136890513} a^{13} - \frac{255197720185306261483516}{3094845078693726136890513} a^{12} + \frac{93247217484188830528103}{3094845078693726136890513} a^{11} + \frac{1385579267891536828483660}{3094845078693726136890513} a^{10} - \frac{783295600111224247247147}{3094845078693726136890513} a^{9} - \frac{832736010034897767794963}{3094845078693726136890513} a^{8} + \frac{436875142914962220049856}{1031615026231242045630171} a^{7} - \frac{155123633067900988554840}{343871675410414015210057} a^{6} - \frac{49181128322075758765198}{3094845078693726136890513} a^{5} - \frac{701264302666574822121580}{3094845078693726136890513} a^{4} - \frac{37599917235293650613387}{3094845078693726136890513} a^{3} - \frac{386787641021981801029186}{1031615026231242045630171} a^{2} + \frac{772530165209656528073860}{3094845078693726136890513} a + \frac{137686835966086276021538}{1031615026231242045630171}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4159673.25327 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 327680 |
| The 512 conjugacy class representatives for t20n905 are not computed |
| Character table for t20n905 is not computed |
Intermediate fields
| 5.5.160801.1, 10.4.594710116823.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.0.1 | $x^{8} + x^{2} - 2 x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 401 | Data not computed | ||||||
| 44773 | Data not computed | ||||||