Normalized defining polynomial
\( x^{20} - 60 x^{18} + 926 x^{16} - 1740 x^{14} - 82851 x^{12} + 971250 x^{10} - 4739000 x^{8} + 11032730 x^{6} - 8282560 x^{4} - 6225980 x^{2} + 4675445 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1573698888766283323386134528000000000000000=2^{30}\cdot 5^{15}\cdot 6029^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $128.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{1814501855345278007321578567065628} a^{18} - \frac{143013979507734107220327453422191}{1814501855345278007321578567065628} a^{16} - \frac{329848101639097453566262421674261}{1814501855345278007321578567065628} a^{14} - \frac{1}{4} a^{13} + \frac{183516969529318105975369291358305}{1814501855345278007321578567065628} a^{12} - \frac{44691356453443660906665443488467}{907250927672639003660789283532814} a^{10} - \frac{1}{4} a^{9} - \frac{802053514727063701375472988861219}{1814501855345278007321578567065628} a^{8} - \frac{1}{2} a^{7} + \frac{813305768199567113341304246033199}{1814501855345278007321578567065628} a^{6} + \frac{88744361500502861151077476539332}{453625463836319501830394641766407} a^{4} + \frac{1}{4} a^{3} - \frac{358247917345196555226218038525595}{907250927672639003660789283532814} a^{2} - \frac{1}{2} a - \frac{400893053957683870868477863625111}{907250927672639003660789283532814}$, $\frac{1}{1754623294118883833079966474352462276} a^{19} + \frac{73189005419811732491998570918563635}{877311647059441916539983237176231138} a^{17} + \frac{41795431354040005192528373152555517}{877311647059441916539983237176231138} a^{15} - \frac{1}{4} a^{14} - \frac{185214243492371857444728526515898107}{877311647059441916539983237176231138} a^{13} - \frac{1}{4} a^{12} + \frac{8529501099983183212964167306584799}{1754623294118883833079966474352462276} a^{11} - \frac{1}{4} a^{10} - \frac{435375247869921146454893539801079125}{1754623294118883833079966474352462276} a^{9} + \frac{1}{4} a^{8} + \frac{122205089924151569798131613437296879}{877311647059441916539983237176231138} a^{7} - \frac{1}{2} a^{6} - \frac{728621142938963427996839879412458721}{1754623294118883833079966474352462276} a^{5} + \frac{1}{4} a^{4} - \frac{145566085118212998614254591705396241}{438655823529720958269991618588115569} a^{3} - \frac{1}{4} a^{2} - \frac{303422702896619111093572098563584987}{877311647059441916539983237176231138} a - \frac{1}{2}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25505925958400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.753625.1, 10.6.17531772991120000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.11.2 | $x^{12} - 20$ | $12$ | $1$ | $11$ | $S_3 \times C_4$ | $[\ ]_{12}^{2}$ | |
| 6029 | Data not computed | ||||||