Normalized defining polynomial
\( x^{20} - 8 x^{19} + 26 x^{18} - 36 x^{17} + 4 x^{16} + 38 x^{15} + 6 x^{14} - 172 x^{13} + 246 x^{12} + 234 x^{11} - 924 x^{10} + 840 x^{9} - 241 x^{8} - 798 x^{7} + 1099 x^{6} - 534 x^{5} + 218 x^{4} + 112 x^{3} - 193 x^{2} + 38 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15583578925526925703866482688=2^{20}\cdot 3^{5}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{989} a^{18} + \frac{68}{989} a^{17} + \frac{119}{989} a^{16} + \frac{168}{989} a^{15} + \frac{269}{989} a^{14} - \frac{369}{989} a^{13} + \frac{288}{989} a^{12} + \frac{456}{989} a^{11} + \frac{429}{989} a^{10} + \frac{261}{989} a^{9} - \frac{265}{989} a^{8} + \frac{176}{989} a^{7} + \frac{113}{989} a^{6} - \frac{255}{989} a^{5} - \frac{334}{989} a^{4} + \frac{309}{989} a^{3} - \frac{130}{989} a^{2} - \frac{488}{989} a + \frac{388}{989}$, $\frac{1}{18567677336714336489659109} a^{19} + \frac{6223726400647127026087}{18567677336714336489659109} a^{18} - \frac{5789021791807278601859628}{18567677336714336489659109} a^{17} + \frac{8832356259217999289057269}{18567677336714336489659109} a^{16} + \frac{548248011214570724930695}{18567677336714336489659109} a^{15} - \frac{6554778366345960658423980}{18567677336714336489659109} a^{14} - \frac{1197245439628818026470898}{18567677336714336489659109} a^{13} + \frac{818251711074125381011849}{18567677336714336489659109} a^{12} - \frac{3989044582790629080191848}{18567677336714336489659109} a^{11} - \frac{3780293083966020617621418}{18567677336714336489659109} a^{10} + \frac{4035504360800346432611897}{18567677336714336489659109} a^{9} - \frac{8139961418168407005357447}{18567677336714336489659109} a^{8} + \frac{1829075169696459509425543}{18567677336714336489659109} a^{7} + \frac{8191137525034808908391450}{18567677336714336489659109} a^{6} - \frac{4038739986450923392676265}{18567677336714336489659109} a^{5} - \frac{6799277796509904083420979}{18567677336714336489659109} a^{4} + \frac{2874757496827727108025204}{18567677336714336489659109} a^{3} - \frac{3031821066867504428822346}{18567677336714336489659109} a^{2} + \frac{383833688150121656484648}{18567677336714336489659109} a - \frac{396637773085617045964804}{807290318987579847376483}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3583745.49876 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n427 are not computed |
| Character table for t20n427 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.2414538435584.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.0.1 | $x^{10} - x^{3} - x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 11 | Data not computed | ||||||