Normalized defining polynomial
\( x^{20} - 2 x^{19} + 3 x^{18} + 18 x^{17} - 6 x^{16} + 82 x^{15} + 106 x^{14} - 52 x^{13} + 262 x^{12} + 144 x^{11} - 286 x^{10} - 76 x^{9} - 1069 x^{8} - 2428 x^{7} - 2809 x^{6} - 1898 x^{5} + 1226 x^{4} + 3274 x^{3} + 2214 x^{2} + 636 x + 67 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15583578925526925703866482688=2^{20}\cdot 3^{5}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3244846248071731596929325386621} a^{19} + \frac{945112213152868168141401249272}{3244846248071731596929325386621} a^{18} - \frac{105756626131281920405443235150}{3244846248071731596929325386621} a^{17} - \frac{1045433371091852021832621411428}{3244846248071731596929325386621} a^{16} - \frac{1070353424579918467399143536279}{3244846248071731596929325386621} a^{15} + \frac{1258368548104269519955185377242}{3244846248071731596929325386621} a^{14} + \frac{1574505397726672225640964948063}{3244846248071731596929325386621} a^{13} + \frac{1333216819320396362055062354859}{3244846248071731596929325386621} a^{12} - \frac{654195758624412810064108106440}{3244846248071731596929325386621} a^{11} + \frac{527779916235247727895745435855}{3244846248071731596929325386621} a^{10} + \frac{1327745326331353218083182782262}{3244846248071731596929325386621} a^{9} - \frac{107397194950242946239735372074}{3244846248071731596929325386621} a^{8} - \frac{1115790395631960951751322150645}{3244846248071731596929325386621} a^{7} - \frac{719494301938058078884768975871}{3244846248071731596929325386621} a^{6} + \frac{8419164408971415291330419985}{3244846248071731596929325386621} a^{5} + \frac{1369132841726269487614132341884}{3244846248071731596929325386621} a^{4} - \frac{1515897431923256686482130622258}{3244846248071731596929325386621} a^{3} + \frac{1521546033661342173254324536584}{3244846248071731596929325386621} a^{2} + \frac{544636790216164337841566593023}{3244846248071731596929325386621} a - \frac{1320739759568768594745052752756}{3244846248071731596929325386621}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3040136.91068 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n427 are not computed |
| Character table for t20n427 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.2414538435584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.0.1 | $x^{10} - x^{3} - x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 11 | Data not computed | ||||||