Properties

Label 20.8.15558928209...4521.2
Degree $20$
Signature $[8, 6]$
Discriminant $11^{18}\cdot 23^{4}$
Root discriminant $16.20$
Ramified primes $11, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^2\times C_2^4:C_5$ (as 20T74)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -1, -11, 12, 43, -44, -76, 65, 66, -32, -45, -32, 66, 65, -76, -44, 43, 12, -11, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 - 11*x^18 + 12*x^17 + 43*x^16 - 44*x^15 - 76*x^14 + 65*x^13 + 66*x^12 - 32*x^11 - 45*x^10 - 32*x^9 + 66*x^8 + 65*x^7 - 76*x^6 - 44*x^5 + 43*x^4 + 12*x^3 - 11*x^2 - x + 1)
 
gp: K = bnfinit(x^20 - x^19 - 11*x^18 + 12*x^17 + 43*x^16 - 44*x^15 - 76*x^14 + 65*x^13 + 66*x^12 - 32*x^11 - 45*x^10 - 32*x^9 + 66*x^8 + 65*x^7 - 76*x^6 - 44*x^5 + 43*x^4 + 12*x^3 - 11*x^2 - x + 1, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} - 11 x^{18} + 12 x^{17} + 43 x^{16} - 44 x^{15} - 76 x^{14} + 65 x^{13} + 66 x^{12} - 32 x^{11} - 45 x^{10} - 32 x^{9} + 66 x^{8} + 65 x^{7} - 76 x^{6} - 44 x^{5} + 43 x^{4} + 12 x^{3} - 11 x^{2} - x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1555892820924979549874521=11^{18}\cdot 23^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2729} a^{18} + \frac{486}{2729} a^{17} - \frac{753}{2729} a^{16} + \frac{1230}{2729} a^{15} - \frac{574}{2729} a^{14} + \frac{275}{2729} a^{13} + \frac{702}{2729} a^{12} + \frac{539}{2729} a^{11} - \frac{127}{2729} a^{10} + \frac{347}{2729} a^{9} - \frac{127}{2729} a^{8} + \frac{539}{2729} a^{7} + \frac{702}{2729} a^{6} + \frac{275}{2729} a^{5} - \frac{574}{2729} a^{4} + \frac{1230}{2729} a^{3} - \frac{753}{2729} a^{2} + \frac{486}{2729} a + \frac{1}{2729}$, $\frac{1}{2729} a^{19} + \frac{474}{2729} a^{17} - \frac{1227}{2729} a^{16} - \frac{703}{2729} a^{15} + \frac{881}{2729} a^{14} + \frac{773}{2729} a^{13} + \frac{492}{2729} a^{12} - \frac{97}{2729} a^{11} - \frac{698}{2729} a^{10} + \frac{429}{2729} a^{9} - \frac{506}{2729} a^{8} + \frac{732}{2729} a^{7} + \frac{228}{2729} a^{6} - \frac{503}{2729} a^{5} - \frac{893}{2729} a^{4} - \frac{882}{2729} a^{3} + \frac{758}{2729} a^{2} + \frac{1228}{2729} a - \frac{486}{2729}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23765.4873934 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_2^4:C_5$ (as 20T74):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 320
The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$
Character table for $C_2^2\times C_2^4:C_5$ is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.8.1247354328539.1, 10.6.54232796893.1, 10.4.4930254263.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed
Arithmetically equvalently siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
11Data not computed
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$