Normalized defining polynomial
\( x^{20} - 8 x^{19} + 16 x^{18} + 58 x^{17} - 370 x^{16} + 640 x^{15} + 528 x^{14} - 3956 x^{13} + 5301 x^{12} + 2988 x^{11} - 16592 x^{10} + 16168 x^{9} + 1893 x^{8} - 11998 x^{7} + 2722 x^{6} + 4620 x^{5} - 293 x^{4} - 2588 x^{3} + 426 x^{2} + 642 x - 199 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(154181708612560135336755200000=2^{30}\cdot 5^{5}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{23} a^{18} + \frac{7}{23} a^{17} - \frac{6}{23} a^{16} - \frac{1}{23} a^{15} + \frac{9}{23} a^{14} + \frac{5}{23} a^{13} - \frac{11}{23} a^{12} + \frac{5}{23} a^{11} + \frac{11}{23} a^{10} + \frac{11}{23} a^{9} + \frac{1}{23} a^{8} - \frac{3}{23} a^{7} - \frac{4}{23} a^{6} + \frac{7}{23} a^{5} + \frac{5}{23} a^{3} - \frac{11}{23} a^{2} - \frac{7}{23} a - \frac{7}{23}$, $\frac{1}{1826688465001470277237185517} a^{19} + \frac{15031842303914822635454093}{1826688465001470277237185517} a^{18} - \frac{529874182734968278040784088}{1826688465001470277237185517} a^{17} - \frac{15766143079670698971660194}{1826688465001470277237185517} a^{16} + \frac{387666720009290412305412361}{1826688465001470277237185517} a^{15} - \frac{21378128762595091141626710}{1826688465001470277237185517} a^{14} + \frac{880460250588157416549180519}{1826688465001470277237185517} a^{13} + \frac{810464047844055897954246316}{1826688465001470277237185517} a^{12} - \frac{749947199438677362975772854}{1826688465001470277237185517} a^{11} - \frac{281805489930359408437346645}{1826688465001470277237185517} a^{10} - \frac{669426402888784888842427162}{1826688465001470277237185517} a^{9} + \frac{781894603619417885621457706}{1826688465001470277237185517} a^{8} - \frac{25624745140602622475594948}{1826688465001470277237185517} a^{7} + \frac{321416221637910412274430959}{1826688465001470277237185517} a^{6} - \frac{193486855681543945054515619}{1826688465001470277237185517} a^{5} - \frac{179932312275919651045826039}{1826688465001470277237185517} a^{4} - \frac{349289919700337581434552986}{1826688465001470277237185517} a^{3} - \frac{453632097954283584776186182}{1826688465001470277237185517} a^{2} - \frac{36913990216105603095690908}{1826688465001470277237185517} a + \frac{535780600265426683070906356}{1826688465001470277237185517}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11284822.2025 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n427 are not computed |
| Character table for t20n427 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.219503494144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.0.1 | $x^{10} + x^{2} - x + 3$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |