Normalized defining polynomial
\( x^{20} - 8 x^{19} + 28 x^{18} - 38 x^{17} - 59 x^{16} + 288 x^{15} - 216 x^{14} - 692 x^{13} + 1105 x^{12} + \cdots + 1 \)
Invariants
| Degree: | $20$ |
| |
| Signature: | $[8, 6]$ |
| |
| Discriminant: |
\(154181708612560135336755200000\)
\(\medspace = 2^{30}\cdot 5^{5}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(28.80\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(2\), \(5\), \(11\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{5}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11}a^{16}-\frac{4}{11}a^{15}-\frac{1}{11}a^{14}-\frac{5}{11}a^{13}+\frac{4}{11}a^{12}+\frac{3}{11}a^{11}-\frac{4}{11}a^{10}+\frac{1}{11}a^{9}+\frac{1}{11}a^{8}+\frac{3}{11}a^{7}-\frac{1}{11}a^{6}-\frac{5}{11}a^{5}-\frac{2}{11}a^{4}-\frac{2}{11}a^{3}+\frac{4}{11}a^{2}-\frac{2}{11}a+\frac{1}{11}$, $\frac{1}{11}a^{17}+\frac{5}{11}a^{15}+\frac{2}{11}a^{14}-\frac{5}{11}a^{13}-\frac{3}{11}a^{12}-\frac{3}{11}a^{11}-\frac{4}{11}a^{10}+\frac{5}{11}a^{9}-\frac{4}{11}a^{8}+\frac{2}{11}a^{6}+\frac{1}{11}a^{4}-\frac{4}{11}a^{3}+\frac{3}{11}a^{2}+\frac{4}{11}a+\frac{4}{11}$, $\frac{1}{11}a^{18}-\frac{1}{11}a^{12}+\frac{3}{11}a^{11}+\frac{3}{11}a^{10}+\frac{2}{11}a^{9}-\frac{5}{11}a^{8}-\frac{2}{11}a^{7}+\frac{5}{11}a^{6}+\frac{4}{11}a^{5}-\frac{5}{11}a^{4}+\frac{2}{11}a^{3}-\frac{5}{11}a^{2}+\frac{3}{11}a-\frac{5}{11}$, $\frac{1}{49\cdots 47}a^{19}+\frac{73\cdots 88}{49\cdots 47}a^{18}-\frac{17\cdots 50}{49\cdots 47}a^{17}-\frac{47\cdots 03}{45\cdots 83}a^{16}-\frac{78\cdots 95}{49\cdots 47}a^{15}-\frac{42\cdots 38}{49\cdots 47}a^{14}-\frac{17\cdots 95}{44\cdots 77}a^{13}-\frac{21\cdots 93}{49\cdots 47}a^{12}+\frac{10\cdots 23}{49\cdots 47}a^{11}-\frac{16\cdots 35}{49\cdots 47}a^{10}+\frac{19\cdots 85}{49\cdots 47}a^{9}-\frac{80\cdots 09}{49\cdots 47}a^{8}+\frac{18\cdots 84}{49\cdots 47}a^{7}-\frac{23\cdots 50}{49\cdots 47}a^{6}-\frac{18\cdots 58}{49\cdots 47}a^{5}+\frac{15\cdots 90}{49\cdots 47}a^{4}-\frac{19\cdots 65}{49\cdots 47}a^{3}+\frac{23\cdots 82}{49\cdots 47}a^{2}-\frac{23\cdots 62}{49\cdots 47}a-\frac{21\cdots 12}{49\cdots 47}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $13$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{40\cdots 92}{49\cdots 47}a^{19}-\frac{33\cdots 23}{49\cdots 47}a^{18}+\frac{12\cdots 42}{49\cdots 47}a^{17}-\frac{17\cdots 18}{45\cdots 83}a^{16}-\frac{17\cdots 92}{44\cdots 77}a^{15}+\frac{12\cdots 57}{49\cdots 47}a^{14}-\frac{10\cdots 83}{44\cdots 77}a^{13}-\frac{25\cdots 52}{49\cdots 47}a^{12}+\frac{52\cdots 77}{49\cdots 47}a^{11}+\frac{42\cdots 38}{49\cdots 47}a^{10}-\frac{16\cdots 51}{49\cdots 47}a^{9}+\frac{26\cdots 87}{49\cdots 47}a^{8}+\frac{25\cdots 31}{49\cdots 47}a^{7}-\frac{15\cdots 55}{49\cdots 47}a^{6}-\frac{69\cdots 52}{49\cdots 47}a^{5}+\frac{11\cdots 05}{49\cdots 47}a^{4}-\frac{54\cdots 47}{49\cdots 47}a^{3}+\frac{82\cdots 63}{49\cdots 47}a^{2}+\frac{35\cdots 10}{49\cdots 47}a-\frac{10\cdots 33}{49\cdots 47}$, $\frac{12\cdots 86}{49\cdots 47}a^{19}-\frac{95\cdots 58}{49\cdots 47}a^{18}+\frac{32\cdots 41}{49\cdots 47}a^{17}-\frac{37\cdots 68}{45\cdots 83}a^{16}-\frac{70\cdots 40}{44\cdots 77}a^{15}+\frac{33\cdots 35}{49\cdots 47}a^{14}-\frac{20\cdots 85}{49\cdots 47}a^{13}-\frac{86\cdots 12}{49\cdots 47}a^{12}+\frac{11\cdots 54}{49\cdots 47}a^{11}+\frac{18\cdots 99}{49\cdots 47}a^{10}-\frac{42\cdots 65}{49\cdots 47}a^{9}-\frac{11\cdots 24}{49\cdots 47}a^{8}+\frac{70\cdots 17}{49\cdots 47}a^{7}-\frac{13\cdots 43}{49\cdots 47}a^{6}-\frac{26\cdots 66}{49\cdots 47}a^{5}+\frac{19\cdots 35}{49\cdots 47}a^{4}-\frac{80\cdots 61}{49\cdots 47}a^{3}-\frac{16\cdots 23}{49\cdots 47}a^{2}+\frac{55\cdots 45}{44\cdots 77}a-\frac{13\cdots 13}{49\cdots 47}$, $\frac{56\cdots 79}{49\cdots 47}a^{19}-\frac{37\cdots 74}{49\cdots 47}a^{18}+\frac{10\cdots 14}{49\cdots 47}a^{17}-\frac{25\cdots 55}{45\cdots 83}a^{16}-\frac{48\cdots 07}{44\cdots 77}a^{15}+\frac{10\cdots 13}{49\cdots 47}a^{14}+\frac{87\cdots 20}{49\cdots 47}a^{13}-\frac{48\cdots 73}{49\cdots 47}a^{12}+\frac{24\cdots 96}{49\cdots 47}a^{11}+\frac{14\cdots 97}{49\cdots 47}a^{10}-\frac{83\cdots 86}{49\cdots 47}a^{9}-\frac{29\cdots 96}{49\cdots 47}a^{8}+\frac{21\cdots 61}{49\cdots 47}a^{7}+\frac{39\cdots 94}{49\cdots 47}a^{6}-\frac{16\cdots 42}{49\cdots 47}a^{5}-\frac{17\cdots 37}{49\cdots 47}a^{4}+\frac{93\cdots 97}{49\cdots 47}a^{3}-\frac{64\cdots 47}{49\cdots 47}a^{2}-\frac{18\cdots 11}{49\cdots 47}a+\frac{38\cdots 33}{44\cdots 77}$, $\frac{39\cdots 46}{49\cdots 47}a^{19}-\frac{31\cdots 06}{49\cdots 47}a^{18}+\frac{10\cdots 30}{44\cdots 77}a^{17}-\frac{14\cdots 30}{45\cdots 83}a^{16}-\frac{21\cdots 34}{49\cdots 47}a^{15}+\frac{11\cdots 22}{49\cdots 47}a^{14}-\frac{98\cdots 30}{49\cdots 47}a^{13}-\frac{26\cdots 63}{49\cdots 47}a^{12}+\frac{46\cdots 56}{49\cdots 47}a^{11}+\frac{47\cdots 04}{49\cdots 47}a^{10}-\frac{15\cdots 06}{49\cdots 47}a^{9}+\frac{80\cdots 09}{49\cdots 47}a^{8}+\frac{23\cdots 52}{49\cdots 47}a^{7}-\frac{10\cdots 84}{49\cdots 47}a^{6}-\frac{70\cdots 68}{49\cdots 47}a^{5}+\frac{88\cdots 98}{49\cdots 47}a^{4}-\frac{46\cdots 60}{49\cdots 47}a^{3}+\frac{70\cdots 24}{49\cdots 47}a^{2}+\frac{13\cdots 96}{49\cdots 47}a-\frac{92\cdots 43}{49\cdots 47}$, $\frac{28\cdots 59}{49\cdots 47}a^{19}-\frac{20\cdots 86}{49\cdots 47}a^{18}+\frac{54\cdots 91}{44\cdots 77}a^{17}-\frac{36\cdots 45}{40\cdots 53}a^{16}-\frac{22\cdots 62}{44\cdots 77}a^{15}+\frac{59\cdots 64}{44\cdots 77}a^{14}+\frac{39\cdots 71}{49\cdots 47}a^{13}-\frac{23\cdots 78}{49\cdots 47}a^{12}+\frac{13\cdots 59}{49\cdots 47}a^{11}+\frac{59\cdots 31}{49\cdots 47}a^{10}-\frac{68\cdots 26}{49\cdots 47}a^{9}-\frac{92\cdots 07}{49\cdots 47}a^{8}+\frac{13\cdots 78}{49\cdots 47}a^{7}+\frac{74\cdots 17}{49\cdots 47}a^{6}-\frac{67\cdots 52}{49\cdots 47}a^{5}+\frac{76\cdots 26}{44\cdots 77}a^{4}+\frac{17\cdots 11}{49\cdots 47}a^{3}-\frac{10\cdots 08}{49\cdots 47}a^{2}+\frac{82\cdots 27}{49\cdots 47}a-\frac{26\cdots 24}{49\cdots 47}$, $\frac{56\cdots 79}{49\cdots 47}a^{19}-\frac{37\cdots 74}{49\cdots 47}a^{18}+\frac{10\cdots 14}{49\cdots 47}a^{17}-\frac{25\cdots 55}{45\cdots 83}a^{16}-\frac{48\cdots 07}{44\cdots 77}a^{15}+\frac{10\cdots 13}{49\cdots 47}a^{14}+\frac{87\cdots 20}{49\cdots 47}a^{13}-\frac{48\cdots 73}{49\cdots 47}a^{12}+\frac{24\cdots 96}{49\cdots 47}a^{11}+\frac{14\cdots 97}{49\cdots 47}a^{10}-\frac{83\cdots 86}{49\cdots 47}a^{9}-\frac{29\cdots 96}{49\cdots 47}a^{8}+\frac{21\cdots 61}{49\cdots 47}a^{7}+\frac{39\cdots 94}{49\cdots 47}a^{6}-\frac{16\cdots 42}{49\cdots 47}a^{5}-\frac{17\cdots 37}{49\cdots 47}a^{4}+\frac{93\cdots 97}{49\cdots 47}a^{3}-\frac{64\cdots 47}{49\cdots 47}a^{2}-\frac{18\cdots 11}{49\cdots 47}a+\frac{83\cdots 10}{44\cdots 77}$, $\frac{10\cdots 81}{49\cdots 47}a^{19}-\frac{82\cdots 79}{49\cdots 47}a^{18}+\frac{28\cdots 69}{49\cdots 47}a^{17}-\frac{34\cdots 55}{45\cdots 83}a^{16}-\frac{63\cdots 92}{49\cdots 47}a^{15}+\frac{29\cdots 35}{49\cdots 47}a^{14}-\frac{20\cdots 64}{49\cdots 47}a^{13}-\frac{72\cdots 35}{49\cdots 47}a^{12}+\frac{10\cdots 52}{49\cdots 47}a^{11}+\frac{14\cdots 17}{49\cdots 47}a^{10}-\frac{37\cdots 27}{49\cdots 47}a^{9}-\frac{63\cdots 66}{49\cdots 47}a^{8}+\frac{60\cdots 61}{49\cdots 47}a^{7}-\frac{18\cdots 90}{49\cdots 47}a^{6}-\frac{20\cdots 20}{49\cdots 47}a^{5}+\frac{20\cdots 69}{49\cdots 47}a^{4}-\frac{95\cdots 32}{49\cdots 47}a^{3}+\frac{14\cdots 03}{49\cdots 47}a^{2}+\frac{67\cdots 33}{49\cdots 47}a-\frac{11\cdots 29}{49\cdots 47}$, $\frac{40\cdots 92}{49\cdots 47}a^{19}-\frac{33\cdots 23}{49\cdots 47}a^{18}+\frac{12\cdots 42}{49\cdots 47}a^{17}-\frac{17\cdots 18}{45\cdots 83}a^{16}-\frac{17\cdots 92}{44\cdots 77}a^{15}+\frac{12\cdots 57}{49\cdots 47}a^{14}-\frac{10\cdots 83}{44\cdots 77}a^{13}-\frac{25\cdots 52}{49\cdots 47}a^{12}+\frac{52\cdots 77}{49\cdots 47}a^{11}+\frac{42\cdots 38}{49\cdots 47}a^{10}-\frac{16\cdots 51}{49\cdots 47}a^{9}+\frac{26\cdots 87}{49\cdots 47}a^{8}+\frac{25\cdots 31}{49\cdots 47}a^{7}-\frac{15\cdots 55}{49\cdots 47}a^{6}-\frac{69\cdots 52}{49\cdots 47}a^{5}+\frac{11\cdots 05}{49\cdots 47}a^{4}-\frac{54\cdots 47}{49\cdots 47}a^{3}+\frac{82\cdots 63}{49\cdots 47}a^{2}+\frac{35\cdots 10}{49\cdots 47}a-\frac{59\cdots 86}{49\cdots 47}$, $\frac{11\cdots 87}{49\cdots 47}a^{19}-\frac{94\cdots 66}{49\cdots 47}a^{18}+\frac{29\cdots 06}{44\cdots 77}a^{17}-\frac{40\cdots 24}{45\cdots 83}a^{16}-\frac{71\cdots 61}{49\cdots 47}a^{15}+\frac{33\cdots 41}{49\cdots 47}a^{14}-\frac{23\cdots 12}{49\cdots 47}a^{13}-\frac{83\cdots 17}{49\cdots 47}a^{12}+\frac{12\cdots 46}{49\cdots 47}a^{11}+\frac{17\cdots 23}{49\cdots 47}a^{10}-\frac{43\cdots 47}{49\cdots 47}a^{9}-\frac{91\cdots 87}{49\cdots 47}a^{8}+\frac{71\cdots 51}{49\cdots 47}a^{7}-\frac{15\cdots 36}{49\cdots 47}a^{6}-\frac{30\cdots 81}{49\cdots 47}a^{5}+\frac{17\cdots 95}{49\cdots 47}a^{4}-\frac{53\cdots 39}{49\cdots 47}a^{3}-\frac{96\cdots 22}{49\cdots 47}a^{2}+\frac{27\cdots 93}{49\cdots 47}a+\frac{40\cdots 92}{49\cdots 47}$, $\frac{22\cdots 64}{49\cdots 47}a^{19}-\frac{18\cdots 25}{49\cdots 47}a^{18}+\frac{65\cdots 68}{49\cdots 47}a^{17}-\frac{87\cdots 00}{45\cdots 83}a^{16}-\frac{11\cdots 19}{49\cdots 47}a^{15}+\frac{66\cdots 30}{49\cdots 47}a^{14}-\frac{59\cdots 08}{49\cdots 47}a^{13}-\frac{14\cdots 22}{49\cdots 47}a^{12}+\frac{26\cdots 95}{49\cdots 47}a^{11}+\frac{25\cdots 56}{49\cdots 47}a^{10}-\frac{87\cdots 05}{49\cdots 47}a^{9}+\frac{58\cdots 11}{49\cdots 47}a^{8}+\frac{12\cdots 47}{49\cdots 47}a^{7}-\frac{69\cdots 26}{49\cdots 47}a^{6}-\frac{25\cdots 95}{49\cdots 47}a^{5}+\frac{53\cdots 10}{49\cdots 47}a^{4}-\frac{28\cdots 33}{44\cdots 77}a^{3}+\frac{93\cdots 06}{49\cdots 47}a^{2}-\frac{15\cdots 35}{49\cdots 47}a-\frac{12\cdots 88}{49\cdots 47}$, $\frac{22\cdots 39}{49\cdots 47}a^{19}-\frac{18\cdots 58}{49\cdots 47}a^{18}+\frac{64\cdots 63}{49\cdots 47}a^{17}-\frac{81\cdots 38}{45\cdots 83}a^{16}-\frac{13\cdots 97}{49\cdots 47}a^{15}+\frac{66\cdots 42}{49\cdots 47}a^{14}-\frac{51\cdots 01}{49\cdots 47}a^{13}-\frac{15\cdots 30}{49\cdots 47}a^{12}+\frac{25\cdots 79}{49\cdots 47}a^{11}+\frac{30\cdots 08}{49\cdots 47}a^{10}-\frac{79\cdots 11}{44\cdots 77}a^{9}-\frac{76\cdots 39}{49\cdots 47}a^{8}+\frac{13\cdots 77}{49\cdots 47}a^{7}-\frac{45\cdots 64}{44\cdots 77}a^{6}-\frac{46\cdots 53}{49\cdots 47}a^{5}+\frac{46\cdots 10}{49\cdots 47}a^{4}-\frac{19\cdots 18}{44\cdots 77}a^{3}+\frac{25\cdots 90}{49\cdots 47}a^{2}+\frac{76\cdots 87}{49\cdots 47}a-\frac{26\cdots 95}{49\cdots 47}$, $\frac{16\cdots 91}{49\cdots 47}a^{19}-\frac{13\cdots 83}{49\cdots 47}a^{18}+\frac{45\cdots 02}{49\cdots 47}a^{17}-\frac{56\cdots 06}{45\cdots 83}a^{16}-\frac{88\cdots 16}{44\cdots 77}a^{15}+\frac{46\cdots 96}{49\cdots 47}a^{14}-\frac{34\cdots 03}{49\cdots 47}a^{13}-\frac{11\cdots 60}{49\cdots 47}a^{12}+\frac{17\cdots 91}{49\cdots 47}a^{11}+\frac{22\cdots 69}{49\cdots 47}a^{10}-\frac{61\cdots 99}{49\cdots 47}a^{9}-\frac{90\cdots 20}{49\cdots 47}a^{8}+\frac{99\cdots 31}{49\cdots 47}a^{7}-\frac{29\cdots 47}{49\cdots 47}a^{6}-\frac{38\cdots 78}{49\cdots 47}a^{5}+\frac{29\cdots 49}{49\cdots 47}a^{4}-\frac{12\cdots 14}{49\cdots 47}a^{3}+\frac{89\cdots 59}{49\cdots 47}a^{2}+\frac{90\cdots 04}{49\cdots 47}a-\frac{23\cdots 32}{49\cdots 47}$, $\frac{73\cdots 48}{49\cdots 47}a^{19}-\frac{59\cdots 68}{49\cdots 47}a^{18}+\frac{20\cdots 19}{49\cdots 47}a^{17}-\frac{27\cdots 45}{45\cdots 83}a^{16}-\frac{40\cdots 50}{49\cdots 47}a^{15}+\frac{21\cdots 89}{49\cdots 47}a^{14}-\frac{15\cdots 55}{44\cdots 77}a^{13}-\frac{48\cdots 03}{49\cdots 47}a^{12}+\frac{84\cdots 48}{49\cdots 47}a^{11}+\frac{91\cdots 62}{49\cdots 47}a^{10}-\frac{28\cdots 39}{49\cdots 47}a^{9}-\frac{76\cdots 33}{49\cdots 47}a^{8}+\frac{44\cdots 68}{49\cdots 47}a^{7}-\frac{18\cdots 99}{49\cdots 47}a^{6}-\frac{14\cdots 15}{49\cdots 47}a^{5}+\frac{14\cdots 16}{44\cdots 77}a^{4}-\frac{68\cdots 84}{49\cdots 47}a^{3}+\frac{54\cdots 20}{49\cdots 47}a^{2}+\frac{36\cdots 81}{49\cdots 47}a-\frac{93\cdots 67}{49\cdots 47}$
|
| |
| Regulator: | \( 9214414.27353 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{8}\cdot(2\pi)^{6}\cdot 9214414.27353 \cdot 1}{2\cdot\sqrt{154181708612560135336755200000}}\cr\approx \mathstrut & 0.184816391574 \end{aligned}\] (assuming GRH)
Galois group
$C_2^{10}.C_{10}$ (as 20T427):
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for $C_2^{10}.C_{10}$ |
| Character table for $C_2^{10}.C_{10}$ |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.8.219503494144.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | 20.6.470525233802978928640000000000.6 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }^{2}$ | ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }^{2}$ | ${\href{/padicField/19.10.0.1}{10} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{3}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{4}$ | ${\href{/padicField/29.5.0.1}{5} }^{4}$ | ${\href{/padicField/31.10.0.1}{10} }^{2}$ | ${\href{/padicField/37.10.0.1}{10} }{,}\,{\href{/padicField/37.5.0.1}{5} }^{2}$ | ${\href{/padicField/41.10.0.1}{10} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{3}{,}\,{\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | $20$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.5.0.1}{5} }^{2}$ | ${\href{/padicField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.5.4.30a104.2 | $x^{20} + 2 x^{19} + 6 x^{17} + 8 x^{16} + 6 x^{15} + 18 x^{14} + 12 x^{13} + 26 x^{12} + 30 x^{11} + 22 x^{10} + 40 x^{9} + 25 x^{8} + 40 x^{7} + 30 x^{6} + 22 x^{5} + 26 x^{4} + 10 x^{3} + 18 x^{2} + 4 x + 11$ | $4$ | $5$ | $30$ | 20T427 | not computed |
|
\(5\)
| 5.10.1.0a1.1 | $x^{10} + 3 x^{5} + 3 x^{4} + 2 x^{3} + 4 x^{2} + x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $$[\ ]^{10}$$ |
| 5.5.2.5a1.1 | $x^{10} + 8 x^{6} + 6 x^{5} + 16 x^{2} + 29 x + 9$ | $2$ | $5$ | $5$ | $C_{10}$ | $$[\ ]_{2}^{5}$$ | |
|
\(11\)
| 11.2.5.8a1.2 | $x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31367 x^{5} + 29970 x^{4} + 14840 x^{3} + 4000 x^{2} + 560 x + 43$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |
| 11.2.5.8a1.2 | $x^{10} + 35 x^{9} + 500 x^{8} + 3710 x^{7} + 14985 x^{6} + 31367 x^{5} + 29970 x^{4} + 14840 x^{3} + 4000 x^{2} + 560 x + 43$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ |