Normalized defining polynomial
\( x^{20} - 2 x^{19} + 2 x^{18} - 12 x^{17} + 14 x^{16} + x^{15} - 138 x^{14} + 251 x^{13} - 95 x^{12} - 218 x^{11} + 473 x^{10} - 218 x^{9} - 95 x^{8} + 251 x^{7} - 138 x^{6} + x^{5} + 14 x^{4} - 12 x^{3} + 2 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15398252078750514273032991801=3^{10}\cdot 7993^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7993$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{9} a^{16} - \frac{1}{9} a^{15} + \frac{1}{9} a^{14} - \frac{1}{9} a^{13} + \frac{2}{9} a^{12} - \frac{4}{9} a^{11} + \frac{2}{9} a^{9} + \frac{2}{9} a^{7} - \frac{4}{9} a^{5} + \frac{2}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{13} - \frac{2}{9} a^{12} - \frac{4}{9} a^{11} + \frac{2}{9} a^{10} + \frac{2}{9} a^{9} + \frac{2}{9} a^{8} + \frac{2}{9} a^{7} - \frac{4}{9} a^{6} - \frac{2}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9}$, $\frac{1}{257507127} a^{18} - \frac{4456037}{85835709} a^{17} - \frac{4678025}{257507127} a^{16} - \frac{16840507}{257507127} a^{15} + \frac{17641940}{257507127} a^{14} - \frac{18601585}{85835709} a^{13} + \frac{74780908}{257507127} a^{12} - \frac{126267641}{257507127} a^{11} - \frac{76159873}{257507127} a^{10} + \frac{99783385}{257507127} a^{9} + \frac{95511545}{257507127} a^{8} + \frac{45403777}{257507127} a^{7} + \frac{46169005}{257507127} a^{6} + \frac{38622221}{85835709} a^{5} + \frac{74865746}{257507127} a^{4} - \frac{102676216}{257507127} a^{3} - \frac{90513734}{257507127} a^{2} + \frac{5081264}{85835709} a - \frac{114447611}{257507127}$, $\frac{1}{257507127} a^{19} + \frac{1875682}{257507127} a^{17} + \frac{4012049}{257507127} a^{16} + \frac{28220831}{257507127} a^{15} - \frac{566602}{28611903} a^{14} + \frac{42419830}{257507127} a^{13} - \frac{80752208}{257507127} a^{12} + \frac{101862260}{257507127} a^{11} - \frac{26052323}{257507127} a^{10} - \frac{96227623}{257507127} a^{9} - \frac{80431931}{257507127} a^{8} + \frac{52519720}{257507127} a^{7} + \frac{15644828}{85835709} a^{6} + \frac{128340377}{257507127} a^{5} + \frac{5252927}{257507127} a^{4} - \frac{79934843}{257507127} a^{3} + \frac{12032116}{85835709} a^{2} + \frac{92389417}{257507127} a + \frac{23530639}{85835709}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5996265.29363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 720 |
| The 11 conjugacy class representatives for t20n149 |
| Character table for t20n149 |
Intermediate fields
| 10.4.13787743742739.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.4.215811.1, 6.0.1531971526971.1 |
| Degree 10 sibling: | 10.4.13787743742739.1 |
| Degree 12 siblings: | Deg 12, Deg 12 |
| Degree 15 siblings: | 15.7.2975546764864246329.1, Deg 15 |
| Degree 20 siblings: | Deg 20, Deg 20 |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7993 | Data not computed | ||||||