Normalized defining polynomial
\( x^{20} - 7 x^{19} + 16 x^{18} + 7 x^{17} - 116 x^{16} + 257 x^{15} - 198 x^{14} - 275 x^{13} + 1033 x^{12} - 1484 x^{11} + 1114 x^{10} + 10 x^{9} - 849 x^{8} + 1469 x^{7} - 394 x^{6} + 261 x^{5} + 442 x^{4} - 251 x^{3} - 26 x^{2} + 13 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1537414689913008558084697161728=2^{16}\cdot 17\cdot 53^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} + \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{3}{8} a^{4} + \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{16} a^{12} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{3}{8} a + \frac{7}{16}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{3}{8} a^{2} - \frac{5}{16} a + \frac{1}{4}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{13} - \frac{1}{32} a^{12} - \frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{1}{8} a^{8} + \frac{3}{16} a^{6} - \frac{3}{16} a^{5} + \frac{3}{16} a^{4} + \frac{11}{32} a^{2} + \frac{9}{32} a - \frac{5}{32}$, $\frac{1}{64} a^{15} - \frac{1}{32} a^{13} - \frac{1}{64} a^{12} - \frac{1}{16} a^{11} + \frac{3}{32} a^{10} - \frac{1}{8} a^{9} + \frac{3}{32} a^{7} - \frac{3}{16} a^{6} - \frac{3}{16} a^{5} + \frac{13}{32} a^{4} - \frac{9}{64} a^{3} - \frac{1}{4} a^{2} + \frac{3}{16} a + \frac{13}{64}$, $\frac{1}{256} a^{16} + \frac{1}{256} a^{15} + \frac{1}{128} a^{14} - \frac{7}{256} a^{13} + \frac{7}{256} a^{12} + \frac{5}{128} a^{11} + \frac{11}{128} a^{10} + \frac{3}{32} a^{9} + \frac{3}{128} a^{8} - \frac{11}{128} a^{7} - \frac{13}{128} a^{5} + \frac{121}{256} a^{4} + \frac{39}{256} a^{3} - \frac{5}{32} a^{2} + \frac{109}{256} a - \frac{55}{256}$, $\frac{1}{512} a^{17} + \frac{1}{512} a^{15} + \frac{7}{512} a^{14} - \frac{1}{256} a^{13} - \frac{13}{512} a^{12} - \frac{5}{128} a^{11} - \frac{15}{256} a^{10} - \frac{9}{256} a^{9} + \frac{9}{128} a^{8} + \frac{43}{256} a^{7} - \frac{29}{256} a^{6} - \frac{77}{512} a^{5} - \frac{25}{256} a^{4} - \frac{79}{512} a^{3} - \frac{187}{512} a^{2} - \frac{53}{128} a - \frac{153}{512}$, $\frac{1}{36864} a^{18} - \frac{1}{12288} a^{17} + \frac{53}{36864} a^{16} + \frac{1}{512} a^{15} + \frac{155}{12288} a^{14} + \frac{1037}{36864} a^{13} - \frac{913}{36864} a^{12} + \frac{403}{18432} a^{11} + \frac{103}{1152} a^{10} + \frac{253}{18432} a^{9} - \frac{623}{18432} a^{8} - \frac{1957}{9216} a^{7} - \frac{1055}{36864} a^{6} + \frac{5357}{36864} a^{5} + \frac{6203}{36864} a^{4} - \frac{1369}{18432} a^{3} + \frac{829}{36864} a^{2} - \frac{5299}{12288} a + \frac{13871}{36864}$, $\frac{1}{1253376} a^{19} - \frac{1}{104448} a^{18} - \frac{19}{19584} a^{17} + \frac{19}{139264} a^{16} - \frac{301}{417792} a^{15} + \frac{2417}{313344} a^{14} - \frac{16211}{626688} a^{13} + \frac{6863}{1253376} a^{12} - \frac{4571}{626688} a^{11} - \frac{57923}{626688} a^{10} + \frac{10255}{156672} a^{9} + \frac{65341}{626688} a^{8} + \frac{230965}{1253376} a^{7} - \frac{51223}{313344} a^{6} + \frac{67483}{626688} a^{5} + \frac{463003}{1253376} a^{4} - \frac{370385}{1253376} a^{3} + \frac{3299}{12288} a^{2} - \frac{38071}{78336} a + \frac{8225}{139264}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 175093980.343 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20480 |
| The 128 conjugacy class representatives for t20n513 are not computed |
| Character table for t20n513 is not computed |
Intermediate fields
| \(\Q(\sqrt{53}) \), 5.5.2382032.1, 10.10.300726051798272.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $53$ | 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 53.4.3.2 | $x^{4} - 212$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |