Normalized defining polynomial
\( x^{20} - 8 x^{19} + 13 x^{18} + 41 x^{17} - 158 x^{16} - 60 x^{15} + 573 x^{14} + 884 x^{13} - 4568 x^{12} + 4310 x^{11} + 5135 x^{10} - 15080 x^{9} + 9292 x^{8} + 5801 x^{7} - 6242 x^{6} - 7374 x^{5} + 8433 x^{4} + 4832 x^{3} - 5330 x^{2} - 115 x + 529 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(151842021780313265349792921973921=17^{6}\cdot 97^{2}\cdot 401^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 97, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{6} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{12} - \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{6} a^{16} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{6} a^{12} - \frac{1}{2} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{17} - \frac{1}{3} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{18} + \frac{1}{6} a^{14} - \frac{1}{2} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{649688209022117483482718493176263514770794} a^{19} + \frac{36311769192973353747062833271193562353709}{649688209022117483482718493176263514770794} a^{18} - \frac{15914883852446142470088079188115938968717}{324844104511058741741359246588131757385397} a^{17} - \frac{25343070529968742969055898229256618517214}{324844104511058741741359246588131757385397} a^{16} - \frac{5482660724484020495511339356263274056477}{324844104511058741741359246588131757385397} a^{15} - \frac{103022697249836715283550324613153576153283}{324844104511058741741359246588131757385397} a^{14} + \frac{133930110158153173100486919915444009745795}{649688209022117483482718493176263514770794} a^{13} - \frac{33145347882744625480621176395687047058210}{324844104511058741741359246588131757385397} a^{12} - \frac{77572833710973254416122050921279810090273}{649688209022117483482718493176263514770794} a^{11} - \frac{123134717862194443287522601088466432334391}{649688209022117483482718493176263514770794} a^{10} - \frac{16657074237139890322063669950176464521004}{324844104511058741741359246588131757385397} a^{9} - \frac{92778850112872551046598013018900173897239}{324844104511058741741359246588131757385397} a^{8} - \frac{2871004724949481857743490281054746642498}{14123656717872119206146054199483989451539} a^{7} - \frac{2462452869758030308889849534236791745457}{649688209022117483482718493176263514770794} a^{6} + \frac{317834903693211759249673006975912509090655}{649688209022117483482718493176263514770794} a^{5} - \frac{53329360527129009085756848955731035121815}{649688209022117483482718493176263514770794} a^{4} + \frac{214028069268745860090300184265016754390099}{649688209022117483482718493176263514770794} a^{3} + \frac{17653372023536805889412350586183479710701}{649688209022117483482718493176263514770794} a^{2} + \frac{155773000444301708632388723417188857533960}{324844104511058741741359246588131757385397} a - \frac{13403375480572773480843095271045563790823}{28247313435744238412292108398967978903078}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 565525988.067 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 208 conjugacy class representatives for t20n412 are not computed |
| Character table for t20n412 is not computed |
Intermediate fields
| 5.5.160801.1, 10.6.42638129680049.1, 10.6.127035252345713.1, 10.6.724848204560833.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||