Normalized defining polynomial
\( x^{20} - 9 x^{19} + 29 x^{18} - 5 x^{17} - 119 x^{16} + 118 x^{15} + 12 x^{14} + 104 x^{13} + 144 x^{12} - 586 x^{11} - 166 x^{10} + 586 x^{9} + 144 x^{8} - 104 x^{7} + 12 x^{6} - 118 x^{5} - 119 x^{4} + 5 x^{3} + 29 x^{2} + 9 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1493856740684256831493846073344=2^{18}\cdot 11^{8}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{11} a^{14} - \frac{1}{11} a^{13} - \frac{1}{11} a^{12} + \frac{3}{11} a^{11} - \frac{1}{11} a^{10} + \frac{3}{11} a^{9} + \frac{2}{11} a^{7} + \frac{3}{11} a^{5} + \frac{1}{11} a^{4} + \frac{3}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{15} - \frac{2}{11} a^{13} + \frac{2}{11} a^{12} + \frac{2}{11} a^{11} + \frac{2}{11} a^{10} + \frac{3}{11} a^{9} + \frac{2}{11} a^{8} + \frac{2}{11} a^{7} + \frac{3}{11} a^{6} + \frac{4}{11} a^{5} + \frac{4}{11} a^{4} + \frac{4}{11} a^{3} - \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{22} a^{16} - \frac{1}{22} a^{15} - \frac{1}{22} a^{14} + \frac{3}{22} a^{13} + \frac{5}{11} a^{12} + \frac{3}{22} a^{11} - \frac{1}{2} a^{10} - \frac{9}{22} a^{9} + \frac{3}{22} a^{7} + \frac{1}{22} a^{6} + \frac{3}{22} a^{5} - \frac{5}{11} a^{4} - \frac{1}{22} a^{3} - \frac{1}{22} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{44} a^{17} - \frac{1}{22} a^{15} + \frac{15}{44} a^{13} + \frac{15}{44} a^{12} - \frac{7}{22} a^{11} - \frac{9}{22} a^{10} - \frac{15}{44} a^{9} + \frac{3}{44} a^{8} + \frac{1}{11} a^{6} + \frac{9}{44} a^{5} + \frac{9}{44} a^{4} + \frac{7}{22} a^{3} + \frac{2}{11} a^{2} + \frac{1}{22} a + \frac{13}{44}$, $\frac{1}{10753864} a^{18} + \frac{120551}{10753864} a^{17} - \frac{109303}{5376932} a^{16} + \frac{128895}{5376932} a^{15} + \frac{276715}{10753864} a^{14} - \frac{1322203}{2688466} a^{13} - \frac{1282517}{10753864} a^{12} + \frac{1068057}{2688466} a^{11} - \frac{235033}{10753864} a^{10} - \frac{1836907}{5376932} a^{9} + \frac{154679}{977624} a^{8} + \frac{823651}{2688466} a^{7} + \frac{4704201}{10753864} a^{6} - \frac{100173}{2688466} a^{5} + \frac{4122593}{10753864} a^{4} - \frac{848729}{5376932} a^{3} + \frac{598115}{5376932} a^{2} + \frac{609363}{10753864} a + \frac{2444059}{10753864}$, $\frac{1}{3118620560} a^{19} + \frac{1}{389827570} a^{18} - \frac{2620755}{623724112} a^{17} - \frac{115933}{7087774} a^{16} - \frac{11478279}{3118620560} a^{15} + \frac{11355227}{623724112} a^{14} - \frac{1537983033}{3118620560} a^{13} + \frac{1234043463}{3118620560} a^{12} - \frac{299450441}{623724112} a^{11} - \frac{54455221}{283510960} a^{10} + \frac{1236083447}{3118620560} a^{9} - \frac{276505363}{623724112} a^{8} + \frac{941970789}{3118620560} a^{7} - \frac{1375349091}{3118620560} a^{6} - \frac{95935375}{623724112} a^{5} + \frac{513524567}{3118620560} a^{4} - \frac{40806047}{155931028} a^{3} + \frac{110679757}{623724112} a^{2} + \frac{448641387}{1559310280} a - \frac{1159830333}{3118620560}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70690886.458 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.4.611117161574656.2, 10.4.611117161574656.1, 10.10.152779290393664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.18.79 | $x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} - 2$ | $12$ | $1$ | $18$ | $C_2 \times S_4$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |