Normalized defining polynomial
\( x^{20} - x^{19} - 6 x^{18} + 17 x^{17} + 4 x^{16} - 114 x^{15} - 26 x^{14} + 500 x^{13} + 1503 x^{12} - 1060 x^{11} - 9162 x^{10} + 1128 x^{9} + 24663 x^{8} - 5046 x^{7} - 31096 x^{6} + 14496 x^{5} + 9360 x^{4} - 5907 x^{3} + 3264 x^{2} - 3745 x + 1225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1493856740684256831493846073344=2^{18}\cdot 11^{8}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.26$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11} a^{17} - \frac{2}{11} a^{16} + \frac{3}{11} a^{15} + \frac{2}{11} a^{14} - \frac{3}{11} a^{13} - \frac{3}{11} a^{12} + \frac{4}{11} a^{11} - \frac{4}{11} a^{10} - \frac{2}{11} a^{8} - \frac{5}{11} a^{7} - \frac{3}{11} a^{6} - \frac{2}{11} a^{5} - \frac{4}{11} a^{4} - \frac{4}{11} a^{3} + \frac{3}{11} a^{2} + \frac{4}{11} a - \frac{2}{11}$, $\frac{1}{385} a^{18} + \frac{1}{35} a^{17} + \frac{3}{55} a^{16} + \frac{129}{385} a^{15} + \frac{12}{385} a^{14} - \frac{15}{77} a^{13} - \frac{156}{385} a^{12} - \frac{1}{55} a^{11} + \frac{124}{385} a^{10} - \frac{167}{385} a^{9} - \frac{141}{385} a^{8} + \frac{31}{385} a^{7} + \frac{16}{77} a^{6} - \frac{96}{385} a^{5} - \frac{188}{385} a^{4} - \frac{23}{77} a^{3} + \frac{5}{11} a^{2} - \frac{27}{385} a - \frac{2}{11}$, $\frac{1}{241990298210129202105568820102181395} a^{19} + \frac{23539057481099763519758596031586}{34570042601447028872224117157454485} a^{18} - \frac{1770145851631423767998738836704083}{241990298210129202105568820102181395} a^{17} - \frac{11536657215393743393897587810702338}{48398059642025840421113764020436279} a^{16} + \frac{16521283312351313485036681227294078}{34570042601447028872224117157454485} a^{15} + \frac{71336396592891296464717294759699937}{241990298210129202105568820102181395} a^{14} - \frac{67819862620713349853484529023073266}{241990298210129202105568820102181395} a^{13} - \frac{10063940234198064408845954943622513}{241990298210129202105568820102181395} a^{12} - \frac{7124338939602241339548028330619558}{241990298210129202105568820102181395} a^{11} + \frac{57224703080063494488338800468540727}{241990298210129202105568820102181395} a^{10} + \frac{57397990023249084649226503520173127}{241990298210129202105568820102181395} a^{9} - \frac{965273139048866692133784190520012}{6914008520289405774444823431490897} a^{8} + \frac{120310446229971434663510989881179561}{241990298210129202105568820102181395} a^{7} - \frac{105412220104239947051164011189665346}{241990298210129202105568820102181395} a^{6} + \frac{11065777727311056937122256665994323}{34570042601447028872224117157454485} a^{5} - \frac{11458932903184012773196945300299574}{34570042601447028872224117157454485} a^{4} - \frac{16544392243014111172929632039775463}{48398059642025840421113764020436279} a^{3} - \frac{15697790574845399446948309922868082}{241990298210129202105568820102181395} a^{2} - \frac{70355290879609676276723123603212882}{241990298210129202105568820102181395} a + \frac{3193359975494517337070064364259467}{6914008520289405774444823431490897}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67660395.769 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 84 conjugacy class representatives for t20n561 are not computed |
| Character table for t20n561 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.4.611117161574656.5, 10.4.611117161574656.4, 10.10.152779290393664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.12.18.67 | $x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} + 2$ | $12$ | $1$ | $18$ | $C_2 \times S_4$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 11.6.4.1 | $x^{6} + 220 x^{3} + 41503$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $113$ | 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 113.4.0.1 | $x^{4} - x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |