Normalized defining polynomial
\( x^{20} - x^{19} - 90 x^{18} + 71 x^{17} + 3581 x^{16} - 2132 x^{15} - 82643 x^{14} + 35541 x^{13} + 1217625 x^{12} - 370164 x^{11} - 11886078 x^{10} + 2677732 x^{9} + 77335700 x^{8} - 15382586 x^{7} - 328689387 x^{6} + 76009560 x^{5} + 865682349 x^{4} - 290470403 x^{3} - 1272386337 x^{2} + 587290123 x + 860975209 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14735319462983715612393284462890625=5^{10}\cdot 1039^{2}\cdot 1049^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 1039, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{19} - \frac{22263700050229711804466219043341897650479570651415542481668200000052734604}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{18} - \frac{44323115944545333935234276392252167709033455516654894824402350125787327417}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{17} - \frac{57193946769891314450495933212096902100265032081687214392016320283948521538}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{16} - \frac{67895752905299738919547435363159092934962673948052182616347142130865507787}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{15} - \frac{3752386394007404318487038279839663993318205332061937149920203118244885102}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{14} - \frac{9595925167909314652849975286761629268228207324985364896775608777556047401}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{13} - \frac{33958144834046161894157199672526271861916677959383995772666931609059759543}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{12} - \frac{34483773209119596216519775919351171806315395989742317205375998029077481043}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{11} - \frac{11532703226573215569614010469666615278062994959027858759848866393880333295}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{10} + \frac{66509753527174769914023154686724102288880046332250782047705138564046497587}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{9} + \frac{60454315946979614477840298214754663227961875337499862302721028887175696248}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{8} - \frac{32489114922574680990000375571681866634706863622321160689897557318149690104}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{7} - \frac{38250440851486134533544174567463545867895296076317003903296285132279092123}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{6} + \frac{47073545647286793001318042903150458099956354948354874206893297884914876888}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{5} + \frac{45737927119436367362023740071047207517346261257758457741046011261557543923}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{4} - \frac{77738008074841351989020655092491110448468493927451129463793016348288517522}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{3} + \frac{68929753364162093269146701194520592645872858559347141036170802949680554081}{157503721436633036291585577098733485697999218551676806782756699425252609881} a^{2} - \frac{74305141848647513539339695853554923621446095373823001044869997954266175903}{157503721436633036291585577098733485697999218551676806782756699425252609881} a + \frac{9202887831429623187814240779216085352142978255155019586522124811041961501}{157503721436633036291585577098733485697999218551676806782756699425252609881}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2605723972.29 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.26225.1, 10.4.3405971875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 1039 | Data not computed | ||||||
| 1049 | Data not computed | ||||||