Normalized defining polynomial
\( x^{20} - 5 x^{19} - 24 x^{18} + 94 x^{17} + 316 x^{16} - 527 x^{15} - 2449 x^{14} + 241 x^{13} + 8088 x^{12} + 1094 x^{11} - 4294 x^{10} + 30738 x^{9} + 13527 x^{8} - 70159 x^{7} - 81531 x^{6} + 172477 x^{5} + 311280 x^{4} - 349102 x^{3} - 259484 x^{2} + 366509 x + 141791 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14728777159439278684044189453125=5^{13}\cdot 97^{2}\cdot 1039^{4}\cdot 1049^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 97, 1039, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{25607956099402057015806403441586559029780968944352335218951} a^{19} - \frac{1372470303944517474071957167069194548045729003056478733210}{25607956099402057015806403441586559029780968944352335218951} a^{18} + \frac{300488523507807515940660194080597686411493095425328147003}{25607956099402057015806403441586559029780968944352335218951} a^{17} - \frac{2405392001096758352683610921007672309727273846475866837734}{25607956099402057015806403441586559029780968944352335218951} a^{16} - \frac{1786129458778493650344839464013093691792706482857922522543}{25607956099402057015806403441586559029780968944352335218951} a^{15} + \frac{3543872712027002164846508217561025913437383236500849143512}{25607956099402057015806403441586559029780968944352335218951} a^{14} - \frac{11429934307281438018326734338290618052067872925435178977424}{25607956099402057015806403441586559029780968944352335218951} a^{13} + \frac{8753092812397681998572928895443537512218354289715713281825}{25607956099402057015806403441586559029780968944352335218951} a^{12} - \frac{3880303726898573425112335343311478698842125049116254912738}{25607956099402057015806403441586559029780968944352335218951} a^{11} - \frac{5542532335676819638696302739689457904730951060281751284885}{25607956099402057015806403441586559029780968944352335218951} a^{10} + \frac{791790884576223001649689977826208176332510293762855323477}{25607956099402057015806403441586559029780968944352335218951} a^{9} + \frac{4187738759395528853613195775240629684835123526973397602461}{25607956099402057015806403441586559029780968944352335218951} a^{8} - \frac{235968855092920586109667867003085928827170753106703458931}{25607956099402057015806403441586559029780968944352335218951} a^{7} - \frac{10560661596771684788778867834151501321530563365098825988505}{25607956099402057015806403441586559029780968944352335218951} a^{6} - \frac{11673394891232299133561353200270369812765865171075975458579}{25607956099402057015806403441586559029780968944352335218951} a^{5} - \frac{12442326983680772628272858268431940626946441149249564229828}{25607956099402057015806403441586559029780968944352335218951} a^{4} + \frac{11549294751552397098556976131264750903562439196065360330910}{25607956099402057015806403441586559029780968944352335218951} a^{3} - \frac{951854990576611316348403644476801290525438975374171586190}{1969842776877081308908184880122043002290843764950179632227} a^{2} + \frac{1209444392956178030655573798090991049221572114925596471330}{25607956099402057015806403441586559029780968944352335218951} a + \frac{768041689484536772140476643016309900371583027814589496395}{1969842776877081308908184880122043002290843764950179632227}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77014797.8746 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 378 conjugacy class representatives for t20n1039 are not computed |
| Character table for t20n1039 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.4.3405971875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1039 | Data not computed | ||||||
| 1049 | Data not computed | ||||||