Normalized defining polynomial
\( x^{20} - 8 x^{19} + 29 x^{18} - 128 x^{17} + 493 x^{16} - 1180 x^{15} + 2151 x^{14} - 3166 x^{13} + 2535 x^{12} + 484 x^{11} - 3002 x^{10} + 9438 x^{9} - 10408 x^{8} + 5692 x^{7} - 4601 x^{6} - 3330 x^{5} + 10982 x^{4} - 6748 x^{3} + 703 x^{2} + 546 x - 131 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14609322487882432594514132598784=2^{20}\cdot 11^{18}\cdot 1583^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1583$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{14} - \frac{1}{8} a^{12} - \frac{1}{4} a^{9} - \frac{1}{8} a^{7} + \frac{1}{16} a^{6} + \frac{3}{8} a^{5} + \frac{7}{16} a^{4} + \frac{3}{8} a^{3} + \frac{1}{4} a^{2} + \frac{1}{8} a + \frac{1}{16}$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{10} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} + \frac{3}{8} a^{6} + \frac{7}{16} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{1}{16} a$, $\frac{1}{64} a^{16} - \frac{1}{64} a^{14} - \frac{1}{32} a^{12} + \frac{3}{16} a^{11} + \frac{1}{4} a^{10} - \frac{11}{32} a^{9} + \frac{17}{64} a^{8} - \frac{7}{16} a^{7} - \frac{3}{8} a^{6} + \frac{3}{16} a^{5} + \frac{11}{64} a^{4} + \frac{3}{8} a^{3} + \frac{21}{64} a^{2} + \frac{9}{32} a - \frac{15}{64}$, $\frac{1}{64} a^{17} - \frac{1}{64} a^{15} - \frac{1}{32} a^{13} - \frac{1}{16} a^{12} + \frac{1}{4} a^{11} + \frac{13}{32} a^{10} + \frac{17}{64} a^{9} - \frac{3}{16} a^{8} - \frac{3}{8} a^{7} - \frac{1}{16} a^{6} - \frac{21}{64} a^{5} + \frac{3}{8} a^{4} + \frac{21}{64} a^{3} - \frac{15}{32} a^{2} + \frac{17}{64} a - \frac{1}{4}$, $\frac{1}{256} a^{18} - \frac{3}{256} a^{14} + \frac{3}{64} a^{13} + \frac{7}{128} a^{12} + \frac{27}{128} a^{11} - \frac{31}{256} a^{10} - \frac{57}{128} a^{9} + \frac{57}{256} a^{8} - \frac{5}{16} a^{7} - \frac{13}{256} a^{6} + \frac{25}{64} a^{5} - \frac{3}{8} a^{4} - \frac{43}{128} a^{3} + \frac{35}{128} a^{2} - \frac{55}{128} a + \frac{49}{256}$, $\frac{1}{16187720526712168864270826726144} a^{19} + \frac{1633615401660088557237804207}{1011732532919510554016926670384} a^{18} + \frac{6119883972843891231537490949}{4046930131678042216067706681536} a^{17} + \frac{1108243414854212292521161407}{4046930131678042216067706681536} a^{16} + \frac{257016680293493556140464816649}{16187720526712168864270826726144} a^{15} + \frac{4095566109630084157551833265}{505866266459755277008463335192} a^{14} - \frac{396178331938744822596773271533}{8093860263356084432135413363072} a^{13} - \frac{977146501227497852068160147033}{8093860263356084432135413363072} a^{12} - \frac{3344722422250188140185379766575}{16187720526712168864270826726144} a^{11} - \frac{532252434297268253656223563549}{8093860263356084432135413363072} a^{10} - \frac{2922806983183372329678062500027}{16187720526712168864270826726144} a^{9} + \frac{728795008299137832815019688619}{4046930131678042216067706681536} a^{8} + \frac{4525565776386287047896121614627}{16187720526712168864270826726144} a^{7} - \frac{1895978131723086957083246305}{15387567040600920973641470272} a^{6} + \frac{599182279165303422811893439979}{4046930131678042216067706681536} a^{5} - \frac{3787127759819283349763318698209}{8093860263356084432135413363072} a^{4} + \frac{3544888541149554001576243687349}{8093860263356084432135413363072} a^{3} + \frac{3966845672498453149251094171107}{8093860263356084432135413363072} a^{2} - \frac{5753805998655690656200962523587}{16187720526712168864270826726144} a - \frac{5366074243969986392773729967}{30892596425023223023417608256}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 95308373.4598 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1583 | Data not computed | ||||||