Normalized defining polynomial
\( x^{20} - 20 x^{18} - 30 x^{17} + 205 x^{16} + 412 x^{15} - 1010 x^{14} - 2160 x^{13} + 1940 x^{12} + 4900 x^{11} - 1690 x^{10} - 4200 x^{9} + 6100 x^{8} + 6600 x^{7} - 9050 x^{6} - 13300 x^{5} - 2125 x^{4} + 4000 x^{3} + 2250 x^{2} + 250 x - 125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(14315153843200000000000000000000=2^{28}\cdot 5^{20}\cdot 7^{8}\cdot 97\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{8} + \frac{1}{5} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{9} + \frac{1}{5} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{8} + \frac{1}{5} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{10} a^{13} - \frac{1}{2} a^{9} + \frac{1}{5} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{30} a^{14} + \frac{1}{30} a^{11} - \frac{1}{30} a^{10} + \frac{7}{30} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{13}{30} a^{6} - \frac{1}{15} a^{5} + \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{150} a^{15} - \frac{1}{30} a^{12} + \frac{1}{30} a^{11} + \frac{7}{150} a^{10} + \frac{4}{15} a^{9} - \frac{7}{15} a^{8} + \frac{13}{30} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{300} a^{16} + \frac{1}{30} a^{13} - \frac{1}{30} a^{12} - \frac{2}{75} a^{11} + \frac{1}{30} a^{10} - \frac{7}{30} a^{9} - \frac{13}{30} a^{8} - \frac{4}{15} a^{7} - \frac{1}{10} a^{6} - \frac{1}{30} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{300} a^{17} - \frac{1}{30} a^{13} - \frac{2}{75} a^{12} + \frac{1}{3} a^{9} + \frac{2}{5} a^{8} + \frac{7}{30} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{4} a + \frac{1}{3}$, $\frac{1}{300} a^{18} - \frac{2}{75} a^{13} + \frac{1}{30} a^{11} - \frac{11}{30} a^{9} + \frac{1}{15} a^{8} + \frac{1}{15} a^{7} + \frac{11}{30} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} - \frac{1}{6} a + \frac{1}{6}$, $\frac{1}{10021496604059040663300} a^{19} + \frac{58542008538652594}{2505374151014760165825} a^{18} - \frac{2674631640943602309}{3340498868019680221100} a^{17} - \frac{2821082753385610609}{2505374151014760165825} a^{16} + \frac{3166442494577064403}{1002149660405904066330} a^{15} - \frac{2804674154019431834}{835124717004920055275} a^{14} + \frac{34500792931505014977}{1670249434009840110550} a^{13} + \frac{36091214392282590378}{835124717004920055275} a^{12} + \frac{42540327115401834052}{2505374151014760165825} a^{11} - \frac{24839859389548117616}{501074830202952033165} a^{10} + \frac{296360596715741548273}{1002149660405904066330} a^{9} + \frac{2450723736500538768}{33404988680196802211} a^{8} - \frac{161271120989955921351}{334049886801968022110} a^{7} - \frac{122481338736286064564}{501074830202952033165} a^{6} - \frac{144415913873610328589}{1002149660405904066330} a^{5} - \frac{1295505166275515725}{100214966040590406633} a^{4} + \frac{27104994555785504563}{400859864162361626532} a^{3} + \frac{22521856417914426827}{100214966040590406633} a^{2} - \frac{126068307093776656459}{400859864162361626532} a + \frac{14400077232513951204}{33404988680196802211}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 545725046.226 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 655360 |
| The 331 conjugacy class representatives for t20n946 are not computed |
| Character table for t20n946 is not computed |
Intermediate fields
| 5.5.2450000.1, 10.4.384160000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.4 | $x^{10} + 2 x^{5} - 2 x^{4} - 6$ | $10$ | $1$ | $14$ | $((C_2^4 : C_5):C_4)\times C_2$ | $[8/5, 8/5, 8/5, 8/5, 2]_{5}^{4}$ |
| 2.10.14.4 | $x^{10} + 2 x^{5} - 2 x^{4} - 6$ | $10$ | $1$ | $14$ | $((C_2^4 : C_5):C_4)\times C_2$ | $[8/5, 8/5, 8/5, 8/5, 2]_{5}^{4}$ | |
| $5$ | 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.10.10.10 | $x^{10} + 10 x^{8} + 5 x^{6} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 2$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 7 | Data not computed | ||||||
| 97 | Data not computed | ||||||