Normalized defining polynomial
\( x^{20} - 2 x^{19} - 7 x^{18} - x^{17} - 7 x^{16} + 96 x^{15} + 146 x^{14} + 69 x^{13} - 364 x^{12} - 1030 x^{11} + 67 x^{10} + 690 x^{9} + 1251 x^{8} - 213 x^{7} - 578 x^{6} - 757 x^{5} - 1088 x^{4} - 543 x^{3} - 920 x^{2} - 158 x + 89 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13390863387968309382119140625=5^{10}\cdot 1039^{2}\cdot 1049^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 1039, 1049$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{227269492889674298303560788656792903267} a^{19} - \frac{27080074727411013628596385085206422124}{227269492889674298303560788656792903267} a^{18} + \frac{53788064522889315523849349736020684919}{227269492889674298303560788656792903267} a^{17} + \frac{112486734414383582252582302356229243154}{227269492889674298303560788656792903267} a^{16} + \frac{56652437267058936763283151442287461184}{227269492889674298303560788656792903267} a^{15} + \frac{2980547013168175168094765382504608368}{7836879065161182700122785815751479423} a^{14} + \frac{95766913719760670483795077932204337580}{227269492889674298303560788656792903267} a^{13} + \frac{111443127500191468808534708631878780367}{227269492889674298303560788656792903267} a^{12} + \frac{76667638792927530884793616540195222661}{227269492889674298303560788656792903267} a^{11} + \frac{154300453688525044507058950546946681}{7331273964183041880760025440541706557} a^{10} + \frac{3609699005975478964762550249491142702}{7836879065161182700122785815751479423} a^{9} - \frac{19809870669022643193893126773568426300}{227269492889674298303560788656792903267} a^{8} + \frac{2389681228659609771806344641522282520}{7836879065161182700122785815751479423} a^{7} + \frac{48542078189125366117358758416913053776}{227269492889674298303560788656792903267} a^{6} - \frac{15497409848998689015247361019736837914}{227269492889674298303560788656792903267} a^{5} - \frac{111922029757201131074584495132807929821}{227269492889674298303560788656792903267} a^{4} + \frac{61284289956320385620760857828479045406}{227269492889674298303560788656792903267} a^{3} - \frac{2458167624403580115166048064362600240}{7331273964183041880760025440541706557} a^{2} - \frac{21403107161814526914753896580618907371}{227269492889674298303560788656792903267} a - \frac{107015602351311984898903901226445595922}{227269492889674298303560788656792903267}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2561196.6963 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.26225.1, 10.4.3405971875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 1039 | Data not computed | ||||||
| 1049 | Data not computed | ||||||