Normalized defining polynomial
\( x^{20} + 2 x^{18} - 8 x^{17} - 40 x^{16} + 224 x^{15} - 396 x^{14} + 12 x^{13} + 635 x^{12} + 4928 x^{11} + 2368 x^{10} - 50860 x^{9} + 96318 x^{8} - 27684 x^{7} - 248298 x^{6} + 481528 x^{5} - 336023 x^{4} - 92876 x^{3} + 134326 x^{2} - 11392 x - 2209 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13186009861649028087808000000000000=2^{38}\cdot 5^{12}\cdot 97\cdot 1193^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 97, 1193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{28} a^{18} - \frac{1}{14} a^{17} - \frac{9}{28} a^{16} + \frac{3}{7} a^{15} - \frac{13}{28} a^{14} - \frac{1}{2} a^{13} - \frac{5}{28} a^{12} + \frac{2}{7} a^{11} - \frac{3}{14} a^{10} + \frac{1}{7} a^{9} - \frac{1}{2} a^{8} + \frac{3}{7} a^{7} - \frac{3}{7} a^{6} - \frac{2}{7} a^{5} + \frac{3}{14} a^{4} + \frac{2}{7} a^{3} + \frac{11}{28} a^{2} - \frac{1}{14} a - \frac{11}{28}$, $\frac{1}{78805973847902685608794638238348822338212847442538211164} a^{19} + \frac{139961133219020572826200043070306205329602870797998253}{19701493461975671402198659559587205584553211860634552791} a^{18} - \frac{2641471021440316070051502894019666149776095371945790577}{78805973847902685608794638238348822338212847442538211164} a^{17} - \frac{7977325495504716132898154383493183583875000235787409263}{39402986923951342804397319119174411169106423721269105582} a^{16} - \frac{23085839760860479512991020833691724243926046635876174049}{78805973847902685608794638238348822338212847442538211164} a^{15} - \frac{391371287108275921201742227379182511430643664335148424}{19701493461975671402198659559587205584553211860634552791} a^{14} - \frac{4225227694502950996395275699659483553172071808715235097}{78805973847902685608794638238348822338212847442538211164} a^{13} - \frac{18220714381692346000110649352357891458027088051287334655}{39402986923951342804397319119174411169106423721269105582} a^{12} - \frac{18380660578348766713537840112539938143033230461701269427}{39402986923951342804397319119174411169106423721269105582} a^{11} + \frac{1763938767338543869547084147568223980105831890639280483}{19701493461975671402198659559587205584553211860634552791} a^{10} + \frac{10502513089786058739782084008918503348380318488247802883}{39402986923951342804397319119174411169106423721269105582} a^{9} - \frac{9428179907037732881479712927635790623520685938184850250}{19701493461975671402198659559587205584553211860634552791} a^{8} + \frac{609386545405233278381875708630736094335599916790918971}{2814499065996524486028379937083886512079030265804936113} a^{7} - \frac{144418192912321391488483693896828530276473574539141180}{371726291735390026456578482256362369519871921898765147} a^{6} + \frac{5972459546749520592532569672368148830221102134098627879}{39402986923951342804397319119174411169106423721269105582} a^{5} + \frac{503500279190682798591534142396961703951077214593222296}{2814499065996524486028379937083886512079030265804936113} a^{4} - \frac{32843898792463631872521487828632368406089528107523486813}{78805973847902685608794638238348822338212847442538211164} a^{3} + \frac{5899030113716513866550200764584291701926490723443646169}{19701493461975671402198659559587205584553211860634552791} a^{2} + \frac{32896037363034491816608070930001982814799068020760787697}{78805973847902685608794638238348822338212847442538211164} a + \frac{5889859090065270035295451647651999477425932496054126615}{39402986923951342804397319119174411169106423721269105582}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6655168720.15 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 409600 |
| The 190 conjugacy class representatives for t20n925 are not computed |
| Character table for t20n925 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.728703488000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 97 | Data not computed | ||||||
| 1193 | Data not computed | ||||||