Normalized defining polynomial
\( x^{20} - 6 x^{19} + 25 x^{18} - 119 x^{17} - 208 x^{16} + 1781 x^{15} - 64 x^{14} + 23621 x^{13} - 143330 x^{12} + 154704 x^{11} - 51244 x^{10} + 563814 x^{9} + 1936911 x^{8} - 27484603 x^{7} + 98159604 x^{6} - 132536173 x^{5} + 169584681 x^{4} - 585134531 x^{3} + 215667329 x^{2} + 2038938147 x - 2100751929 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1315643316557894633135034313995361328125=5^{15}\cdot 401^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{4}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{8} + \frac{4}{9} a^{7} - \frac{4}{9} a^{6} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{9} a^{2} - \frac{4}{9} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{9} a^{8} - \frac{1}{9} a^{7} + \frac{1}{3} a^{6} + \frac{2}{9} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{3} - \frac{1}{9} a^{2} - \frac{2}{9} a$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{14} + \frac{1}{27} a^{13} - \frac{1}{9} a^{12} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} - \frac{2}{27} a^{9} + \frac{1}{27} a^{8} - \frac{5}{27} a^{7} + \frac{2}{9} a^{6} - \frac{1}{3} a^{5} + \frac{5}{27} a^{4} + \frac{7}{27} a^{3} - \frac{4}{27} a^{2} - \frac{4}{9} a$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{15} + \frac{1}{27} a^{14} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{1}{27} a^{10} - \frac{2}{27} a^{9} + \frac{1}{27} a^{8} + \frac{1}{3} a^{7} - \frac{4}{9} a^{6} - \frac{13}{27} a^{5} + \frac{13}{27} a^{4} - \frac{13}{27} a^{3} + \frac{2}{9} a$, $\frac{1}{243} a^{18} - \frac{1}{81} a^{17} - \frac{1}{81} a^{16} + \frac{10}{243} a^{15} - \frac{13}{243} a^{14} + \frac{13}{243} a^{13} + \frac{11}{81} a^{12} + \frac{10}{243} a^{11} + \frac{10}{243} a^{10} - \frac{4}{243} a^{9} - \frac{11}{243} a^{8} - \frac{38}{243} a^{7} + \frac{80}{243} a^{6} + \frac{10}{243} a^{5} - \frac{116}{243} a^{4} - \frac{56}{243} a^{3} - \frac{13}{243} a^{2} - \frac{1}{27} a + \frac{1}{3}$, $\frac{1}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{19} - \frac{481933389399127202903111121150111066503461944363018172454328170672435681}{863577364388510322348592425210898089832876186215145723418352861999490857447} a^{18} + \frac{10894581352077356618621117011458253583465226941948903258966555356524344543}{863577364388510322348592425210898089832876186215145723418352861999490857447} a^{17} + \frac{24660162464822063838261715975022213643888409969390982634675701575546892491}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{16} + \frac{102395801930875042424617309906856056740149004310707631392175433037104576753}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{15} + \frac{132681144121736627117332926068142218111189748437551102090715636340005709319}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{14} + \frac{42123219555603997358401140375136033674067200647022507258988591348951337866}{863577364388510322348592425210898089832876186215145723418352861999490857447} a^{13} - \frac{334277119476851507583084258062439299207578273560641471584027346410636639742}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{12} + \frac{7047032983620117479600427955083325568822170740309936701109996714245206192}{70019786301771107217453439881964709986449420503930734331217799621580339793} a^{11} + \frac{229587129892904021668986157474039811879941456996410385726519927750777001810}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{10} + \frac{351054500324072870467483864435148816152314633545866676030065943633040068083}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{9} - \frac{416426915086206566269967540080280241231741108849519950513183289018330887312}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{8} + \frac{1157179734059291563011290175636093922372422034449914586345621042704542550114}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{7} + \frac{136487550926825984283240487638346784768124671316008297299219681581050995315}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{6} - \frac{1139121212975518787896019504577979163651956564672120217526553320258311900762}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{5} + \frac{36767293930410016171689317317180529905006361513783566429064248633015776193}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{4} - \frac{479180412589741007707858842656909353501397793395643231681051496865238519145}{2590732093165530967045777275632694269498628558645437170255058585998472572341} a^{3} + \frac{192210603399614556720813585860293390738436541859854640099606650604089796732}{863577364388510322348592425210898089832876186215145723418352861999490857447} a^{2} - \frac{34827920702190999428654132016366184591217637623833268992566710905901904173}{95953040487612258038732491690099787759208465135016191490928095777721206383} a + \frac{3705079247619173129853716202098046258145217681649061642743071004458099414}{10661448943068028670970276854455531973245385015001799054547566197524578487}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1139732818500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 28 conjugacy class representatives for t20n138 |
| Character table for t20n138 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.160801.1, 10.10.80803005003125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 401 | Data not computed | ||||||