Normalized defining polynomial
\( x^{20} - 2 x^{19} - 14 x^{18} + 65 x^{17} - 39 x^{16} - 329 x^{15} + 622 x^{14} - 2074 x^{13} - 1721 x^{12} + 11724 x^{11} - 3202 x^{10} - 2334 x^{9} + 38319 x^{8} + 13654 x^{7} - 21038 x^{6} - 121 x^{5} + 65866 x^{4} - 75655 x^{3} - 34699 x^{2} + 60617 x - 16189 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(13146741154754246205048370361328125=5^{17}\cdot 11^{6}\cdot 9931^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 9931$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{49410433741999192786412230683659036701243996477061129} a^{19} - \frac{21564103823413837258575626611890022095638601780210114}{49410433741999192786412230683659036701243996477061129} a^{18} + \frac{13565145291045249669672841262579631358853088196094394}{49410433741999192786412230683659036701243996477061129} a^{17} - \frac{15703277230935692996330630555774839191139930372058792}{49410433741999192786412230683659036701243996477061129} a^{16} - \frac{21817232377067676925549279558764456074086308235294159}{49410433741999192786412230683659036701243996477061129} a^{15} + \frac{7687861932578052606132537159100317007235765024835005}{49410433741999192786412230683659036701243996477061129} a^{14} - \frac{23379168883388707979446575384439275221377417319223101}{49410433741999192786412230683659036701243996477061129} a^{13} - \frac{5674075139362017122202880585844034038153555297128169}{49410433741999192786412230683659036701243996477061129} a^{12} + \frac{3174421861026357533168238381599773030707316759686731}{49410433741999192786412230683659036701243996477061129} a^{11} - \frac{7259376586593742362113699563251004648808858385495801}{49410433741999192786412230683659036701243996477061129} a^{10} - \frac{8859478050184493212160689327192825596322606543597637}{49410433741999192786412230683659036701243996477061129} a^{9} - \frac{4567017228911823219393348333100245249930167449878013}{49410433741999192786412230683659036701243996477061129} a^{8} + \frac{13170027054158985057697724975582199493788909458559208}{49410433741999192786412230683659036701243996477061129} a^{7} - \frac{22714041537464605887704812644729915531305817208595619}{49410433741999192786412230683659036701243996477061129} a^{6} + \frac{4779671264625892795588915657721761042358453956905585}{49410433741999192786412230683659036701243996477061129} a^{5} + \frac{24456932941434520736822858276511470076094576399588058}{49410433741999192786412230683659036701243996477061129} a^{4} - \frac{4035486446862243980046373088765398933522812112056544}{49410433741999192786412230683659036701243996477061129} a^{3} + \frac{18458880800098061224446609874949786506424893599090714}{49410433741999192786412230683659036701243996477061129} a^{2} + \frac{20698858257595965896192013637681158527419816202894725}{49410433741999192786412230683659036701243996477061129} a + \frac{15833975525315423807230718122635478598646566500457914}{49410433741999192786412230683659036701243996477061129}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4350812050.15 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3686400 |
| The 180 conjugacy class representatives for t20n1010 are not computed |
| Character table for t20n1010 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.932312193828125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | R | $20$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 9931 | Data not computed | ||||||