Normalized defining polynomial
\( x^{20} - 31 x^{18} - 9 x^{17} + 403 x^{16} + 360 x^{15} - 3612 x^{14} - 2007 x^{13} + 21199 x^{12} - 7999 x^{11} - 66951 x^{10} + 106939 x^{9} + 49995 x^{8} - 336218 x^{7} + 279990 x^{6} + 187238 x^{5} - 379608 x^{4} + 185738 x^{3} + 33663 x^{2} - 116850 x + 36100 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(128962918343732771112194751258889=53^{6}\cdot 4241^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $53, 4241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{589549104712059858957163870739826255640283794519240860910} a^{19} - \frac{1123000545535540276205638645532444211477113195010805538}{3102890024800315047142967740735927661264651550101267689} a^{18} + \frac{79459841589685872744686876180365982197014823446727552769}{589549104712059858957163870739826255640283794519240860910} a^{17} + \frac{116449895949366085461864853563441653157393058080571288251}{589549104712059858957163870739826255640283794519240860910} a^{16} + \frac{212531244035155971845793483724804333048773677072786655913}{589549104712059858957163870739826255640283794519240860910} a^{15} + \frac{21548905931463481347519430662781375459958245684135006127}{58954910471205985895716387073982625564028379451924086091} a^{14} + \frac{58973095353768314690001478240583311875163190330933072109}{294774552356029929478581935369913127820141897259620430455} a^{13} + \frac{100037150444844776833861851841368390973758910697530183903}{589549104712059858957163870739826255640283794519240860910} a^{12} - \frac{81603302647129533637818445634847013370167953487506664131}{589549104712059858957163870739826255640283794519240860910} a^{11} + \frac{9352342188280344934813504166411281635466883720970057289}{31028900248003150471429677407359276612646515501012676890} a^{10} - \frac{10116768341360688160946635928416903846196792589798753361}{589549104712059858957163870739826255640283794519240860910} a^{9} - \frac{196162980439132102502245236563125638264255555396470162851}{589549104712059858957163870739826255640283794519240860910} a^{8} - \frac{40832397614610099108826613780762750759589780473559638999}{117909820942411971791432774147965251128056758903848172182} a^{7} + \frac{12526739003736073852610059310376726402185452476009979216}{294774552356029929478581935369913127820141897259620430455} a^{6} + \frac{29289183809110792850324112173322959571789318256207839486}{58954910471205985895716387073982625564028379451924086091} a^{5} + \frac{915468781133371064916470166568464123792573826976919494}{294774552356029929478581935369913127820141897259620430455} a^{4} - \frac{121651698030969410951052924209534038069212351777352690119}{294774552356029929478581935369913127820141897259620430455} a^{3} - \frac{14365105944195207049422690442347091220563339393559181261}{294774552356029929478581935369913127820141897259620430455} a^{2} + \frac{54471311106989473083220045755403997176051384181572146463}{589549104712059858957163870739826255640283794519240860910} a + \frac{1018863136635786208287225860354017226507656586219666950}{3102890024800315047142967740735927661264651550101267689}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 482552188.903 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 63 conjugacy class representatives for t20n555 are not computed |
| Character table for t20n555 is not computed |
Intermediate fields
| 5.5.224773.1, 10.6.11356184145377917.1, 10.6.50522901529.1, 10.6.11356184145377917.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $53$ | 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 53.2.1.2 | $x^{2} + 106$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.2.1 | $x^{4} + 477 x^{2} + 70225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 4241 | Data not computed | ||||||