Normalized defining polynomial
\( x^{20} - 4 x^{19} + 6 x^{18} + 104 x^{17} - 586 x^{16} + 2008 x^{15} - 4416 x^{14} + 9552 x^{13} - 21108 x^{12} + 44176 x^{11} - 68936 x^{10} + 21824 x^{9} + 132672 x^{8} - 295200 x^{7} + 157856 x^{6} + 195552 x^{5} - 226768 x^{4} + 36768 x^{3} + 57888 x^{2} - 21248 x + 1376 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12569066605710630176407970532818944=2^{30}\cdot 11^{18}\cdot 1451^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 1451$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{16} a^{16}$, $\frac{1}{16} a^{17}$, $\frac{1}{16} a^{18}$, $\frac{1}{680414316199430070380639764280982005290451951728} a^{19} + \frac{6530610969633766766933081556601592717841846193}{340207158099715035190319882140491002645225975864} a^{18} + \frac{9179003389788542310328347590391833960696440677}{680414316199430070380639764280982005290451951728} a^{17} - \frac{517029741316076629668697957752642510082552155}{85051789524928758797579970535122750661306493966} a^{16} + \frac{2152656570440039013253309117865658102656777587}{170103579049857517595159941070245501322612987932} a^{15} - \frac{7769462350250587941409687537583566921588977159}{340207158099715035190319882140491002645225975864} a^{14} + \frac{3151171229063548383362011044492315914088851461}{85051789524928758797579970535122750661306493966} a^{13} + \frac{1154945217091201613061750211707885431491718237}{42525894762464379398789985267561375330653246983} a^{12} - \frac{7257954785743679295634127582905353899758155569}{170103579049857517595159941070245501322612987932} a^{11} - \frac{9108695485663115255454658815104932759657099527}{85051789524928758797579970535122750661306493966} a^{10} - \frac{259944347778218965867755767288458595018118383}{3955897187205988781282789327215011658665418324} a^{9} + \frac{3714940393184264293276573637924034766798974642}{42525894762464379398789985267561375330653246983} a^{8} - \frac{16900794530756693780987092875144617145053212019}{85051789524928758797579970535122750661306493966} a^{7} - \frac{6657767828447853201743162622963342122037513801}{85051789524928758797579970535122750661306493966} a^{6} - \frac{17934197476005188970258044992447031658567241193}{85051789524928758797579970535122750661306493966} a^{5} - \frac{8066699803770983766029148908590127410739319019}{42525894762464379398789985267561375330653246983} a^{4} - \frac{15869059766763266025065784479840790955932815355}{42525894762464379398789985267561375330653246983} a^{3} + \frac{3956413599568451421298077914746937225901266134}{42525894762464379398789985267561375330653246983} a^{2} - \frac{19130523305595456124206507505101517152430142869}{42525894762464379398789985267561375330653246983} a + \frac{338871141517276103358266556643457506045337768}{988974296801497195320697331803752914666354581}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1384651748.02 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 1451 | Data not computed | ||||||