Normalized defining polynomial
\( x^{20} - 6 x^{19} + 10 x^{18} + x^{17} - 145 x^{16} + 263 x^{15} - 247 x^{14} + 760 x^{13} + 2913 x^{12} + 2779 x^{11} + 3900 x^{10} + 8065 x^{9} + 11305 x^{8} - 27485 x^{7} - 25303 x^{6} + 20133 x^{5} + 31942 x^{4} - 16238 x^{3} - 8412 x^{2} + 3164 x - 199 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(123578279458495716101657822265625=5^{10}\cdot 19^{7}\cdot 1699^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} + \frac{5}{19} a^{17} - \frac{8}{19} a^{16} + \frac{4}{19} a^{15} + \frac{8}{19} a^{14} + \frac{2}{19} a^{13} + \frac{8}{19} a^{12} - \frac{1}{19} a^{11} + \frac{2}{19} a^{9} + \frac{8}{19} a^{8} + \frac{8}{19} a^{7} - \frac{2}{19} a^{6} - \frac{9}{19} a^{5} - \frac{5}{19} a^{4} + \frac{6}{19} a^{3} - \frac{3}{19} a^{2} - \frac{8}{19} a + \frac{3}{19}$, $\frac{1}{359820799856421128063305725768571597872056845945663} a^{19} - \frac{3335304764099172960825637892835109850576920117371}{359820799856421128063305725768571597872056845945663} a^{18} + \frac{76734198368010796819079963960646537632758184319869}{359820799856421128063305725768571597872056845945663} a^{17} - \frac{51890739855957214770675374290400254362369089309297}{359820799856421128063305725768571597872056845945663} a^{16} + \frac{157509945157964302660720228258312497521168821972395}{359820799856421128063305725768571597872056845945663} a^{15} + \frac{73977790274007680008752362569930136632358171057695}{359820799856421128063305725768571597872056845945663} a^{14} + \frac{95023093076746044051735790830769227238267937135072}{359820799856421128063305725768571597872056845945663} a^{13} - \frac{39750069991019554886956255217232228646977447307954}{359820799856421128063305725768571597872056845945663} a^{12} + \frac{151977516135874885876212048137055045852495311515082}{359820799856421128063305725768571597872056845945663} a^{11} - \frac{121343669224803729255431882559727842925702594253572}{359820799856421128063305725768571597872056845945663} a^{10} + \frac{104426551085332117870666020311886615275188695275199}{359820799856421128063305725768571597872056845945663} a^{9} + \frac{473207788991373086720016890161403907874903791805}{18937936834548480424384511882556399888002991891877} a^{8} - \frac{88603602484184810800251253832575649317719714442749}{359820799856421128063305725768571597872056845945663} a^{7} + \frac{32972419090694617257805119342357890940358854331049}{359820799856421128063305725768571597872056845945663} a^{6} - \frac{4779436853394437655720689713513769947660683409724}{359820799856421128063305725768571597872056845945663} a^{5} - \frac{133506639557893300183268346710382018869472525267064}{359820799856421128063305725768571597872056845945663} a^{4} - \frac{142131506351574707072421748911144560653180513894430}{359820799856421128063305725768571597872056845945663} a^{3} - \frac{127999502725514152354736634281648437611963138308481}{359820799856421128063305725768571597872056845945663} a^{2} + \frac{33250526601265207120517908432086213084505695215857}{359820799856421128063305725768571597872056845945663} a - \frac{40024815759636042741684973044972199287141110857038}{359820799856421128063305725768571597872056845945663}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 109638614.529 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n756 are not computed |
| Character table for t20n756 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 1699 | Data not computed | ||||||