Normalized defining polynomial
\( x^{20} - 9 x^{19} + 25 x^{18} + 23 x^{17} - 336 x^{16} + 972 x^{15} - 1179 x^{14} - 735 x^{13} + 5911 x^{12} - 12885 x^{11} + 17833 x^{10} - 17737 x^{9} + 13107 x^{8} - 7139 x^{7} + 2695 x^{6} - 536 x^{5} - 86 x^{4} + 111 x^{3} - 44 x^{2} + 10 x - 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12304157611974151730282412109=61^{7}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13} a^{15} - \frac{5}{13} a^{13} + \frac{2}{13} a^{12} - \frac{5}{13} a^{11} - \frac{2}{13} a^{10} + \frac{6}{13} a^{9} + \frac{2}{13} a^{8} - \frac{5}{13} a^{7} - \frac{2}{13} a^{6} + \frac{1}{13} a^{5} + \frac{1}{13} a^{4} + \frac{5}{13} a^{2} + \frac{5}{13} a - \frac{5}{13}$, $\frac{1}{13} a^{16} - \frac{5}{13} a^{14} + \frac{2}{13} a^{13} - \frac{5}{13} a^{12} - \frac{2}{13} a^{11} + \frac{6}{13} a^{10} + \frac{2}{13} a^{9} - \frac{5}{13} a^{8} - \frac{2}{13} a^{7} + \frac{1}{13} a^{6} + \frac{1}{13} a^{5} + \frac{5}{13} a^{3} + \frac{5}{13} a^{2} - \frac{5}{13} a$, $\frac{1}{13} a^{17} + \frac{2}{13} a^{14} - \frac{4}{13} a^{13} - \frac{5}{13} a^{12} - \frac{6}{13} a^{11} + \frac{5}{13} a^{10} - \frac{1}{13} a^{9} - \frac{5}{13} a^{8} + \frac{2}{13} a^{7} + \frac{4}{13} a^{6} + \frac{5}{13} a^{5} - \frac{3}{13} a^{4} + \frac{5}{13} a^{3} - \frac{6}{13} a^{2} - \frac{1}{13} a + \frac{1}{13}$, $\frac{1}{126919} a^{18} + \frac{729}{126919} a^{17} + \frac{324}{126919} a^{16} + \frac{3786}{126919} a^{15} + \frac{26003}{126919} a^{14} - \frac{53537}{126919} a^{13} - \frac{26069}{126919} a^{12} + \frac{31950}{126919} a^{11} + \frac{22941}{126919} a^{10} - \frac{42213}{126919} a^{9} + \frac{26719}{126919} a^{8} - \frac{40440}{126919} a^{7} - \frac{61588}{126919} a^{6} + \frac{55252}{126919} a^{5} + \frac{23325}{126919} a^{4} - \frac{14306}{126919} a^{3} - \frac{35081}{126919} a^{2} - \frac{13692}{126919} a - \frac{11496}{126919}$, $\frac{1}{126919} a^{19} - \frac{3915}{126919} a^{17} + \frac{1902}{126919} a^{16} - \frac{27}{9763} a^{15} + \frac{37889}{126919} a^{14} - \frac{39833}{126919} a^{13} + \frac{628}{9763} a^{12} + \frac{3495}{9763} a^{11} - \frac{42183}{126919} a^{10} + \frac{56309}{126919} a^{9} + \frac{36698}{126919} a^{8} - \frac{35799}{126919} a^{7} - \frac{54526}{126919} a^{6} - \frac{2534}{126919} a^{5} - \frac{1322}{126919} a^{4} - \frac{13365}{126919} a^{3} + \frac{49638}{126919} a^{2} - \frac{17577}{126919} a + \frac{62508}{126919}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2881684.84271 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 136 conjugacy class representatives for t20n808 are not computed |
| Character table for t20n808 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||