Normalized defining polynomial
\( x^{20} - 10 x^{18} - 20 x^{17} + 35 x^{16} + 254 x^{15} - 80 x^{14} - 1150 x^{13} + 50 x^{12} + 3200 x^{11} - 1903 x^{10} - 4250 x^{9} + 9105 x^{8} + 3710 x^{7} - 21200 x^{6} - 5224 x^{5} + 24195 x^{4} + 4360 x^{3} - 8620 x^{2} + 960 x - 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1204725760000000000000000000000=2^{32}\cdot 5^{22}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{8} a^{18} - \frac{1}{2} a^{17} - \frac{1}{2} a^{15} + \frac{3}{8} a^{14} + \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{3}{8} a^{8} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{1050262311267406101462482664981959174776} a^{19} - \frac{3035382329589778047159167782930257711}{262565577816851525365620666245489793694} a^{18} + \frac{65631176920231440241166793677875409225}{131282788908425762682810333122744896847} a^{17} - \frac{16081127559325283804600160533868300087}{262565577816851525365620666245489793694} a^{16} + \frac{477965171635883155890150933501128659291}{1050262311267406101462482664981959174776} a^{15} + \frac{233852474491309618591679747204747410657}{525131155633703050731241332490979587388} a^{14} + \frac{94061551938494298933328322912407992823}{525131155633703050731241332490979587388} a^{13} + \frac{219175402112332595780516706456033871671}{525131155633703050731241332490979587388} a^{12} - \frac{149536074228449022316479738318135765597}{525131155633703050731241332490979587388} a^{11} + \frac{126334737463456238246447114292645760649}{262565577816851525365620666245489793694} a^{10} + \frac{27028323208936096515469147772712223309}{1050262311267406101462482664981959174776} a^{9} + \frac{22120136319823241979927651791970761653}{525131155633703050731241332490979587388} a^{8} - \frac{38663785100480672178357039712999909429}{1050262311267406101462482664981959174776} a^{7} - \frac{218018515012053291563861120196016217217}{525131155633703050731241332490979587388} a^{6} + \frac{143896466023559904733625774055379570987}{525131155633703050731241332490979587388} a^{5} - \frac{122398778620307169508743943460243315283}{262565577816851525365620666245489793694} a^{4} + \frac{127696838298051752099538349356098378815}{1050262311267406101462482664981959174776} a^{3} - \frac{70148193210788089131456975995515679967}{262565577816851525365620666245489793694} a^{2} - \frac{78675184403435245181122386231721677591}{525131155633703050731241332490979587388} a - \frac{21528433859346750606294000954991953323}{131282788908425762682810333122744896847}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36223048.1655 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.6.15680000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |