Normalized defining polynomial
\( x^{20} - 2 x^{19} - 24 x^{18} + 60 x^{17} + 9 x^{16} - 74 x^{15} + 684 x^{14} - 3218 x^{13} + 2566 x^{12} + 3642 x^{11} + 9758 x^{10} - 33834 x^{9} - 49005 x^{8} + 350106 x^{7} - 813040 x^{6} + 1115350 x^{5} - 856931 x^{4} + 514434 x^{3} - 474364 x^{2} - 266062 x + 646351 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(119483533089645699448237893615616=2^{30}\cdot 13^{8}\cdot 97^{2}\cdot 347^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 97, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{15575615875903437417000383248434937939235024748140401871146769} a^{19} + \frac{5823600894631658467945768707687329155406106170528505162101938}{15575615875903437417000383248434937939235024748140401871146769} a^{18} - \frac{3215159099191814805210625824131295394957447925814786776047926}{15575615875903437417000383248434937939235024748140401871146769} a^{17} - \frac{1151053103615985431689615662428736105433993299857713364475996}{15575615875903437417000383248434937939235024748140401871146769} a^{16} - \frac{1789464263010836519290573686780322029674710907304659525984377}{15575615875903437417000383248434937939235024748140401871146769} a^{15} - \frac{3845355997010457637719210201836933900287342273143999760331727}{15575615875903437417000383248434937939235024748140401871146769} a^{14} + \frac{5480559972715498310695106493526417231999031519378339793138885}{15575615875903437417000383248434937939235024748140401871146769} a^{13} + \frac{3738920381499206894982798385351833968014529319456630811134697}{15575615875903437417000383248434937939235024748140401871146769} a^{12} + \frac{5441258119672415839391511731479743944169646551259255251484143}{15575615875903437417000383248434937939235024748140401871146769} a^{11} - \frac{6905894297456506839652086495668163107415504729169800202758901}{15575615875903437417000383248434937939235024748140401871146769} a^{10} - \frac{5966052664498228822612393382317364778558159576526252646866767}{15575615875903437417000383248434937939235024748140401871146769} a^{9} + \frac{5686658075355621695172413004030705613073155753741498713608273}{15575615875903437417000383248434937939235024748140401871146769} a^{8} - \frac{325228422974668430286722573772412046798738919904439772453218}{15575615875903437417000383248434937939235024748140401871146769} a^{7} + \frac{5980341196651814723951658682601423053680730104701131857988838}{15575615875903437417000383248434937939235024748140401871146769} a^{6} - \frac{739790140546080691250649309366186333226643948752701999205795}{15575615875903437417000383248434937939235024748140401871146769} a^{5} + \frac{4485118456734898281317393305898258089930592462797536180536726}{15575615875903437417000383248434937939235024748140401871146769} a^{4} + \frac{5157293153794541857860371148777987706611759942996824203656195}{15575615875903437417000383248434937939235024748140401871146769} a^{3} + \frac{3173678272098586865362368786060720779099443603499365362021344}{15575615875903437417000383248434937939235024748140401871146769} a^{2} + \frac{4565509883672635347644319350541737259459224351360995483440133}{15575615875903437417000383248434937939235024748140401871146769} a - \frac{5867234774107341012148063392086605148552588720701314331052469}{15575615875903437417000383248434937939235024748140401871146769}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 106974794.618 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 983040 |
| The 155 conjugacy class representatives for t20n964 are not computed |
| Character table for t20n964 is not computed |
Intermediate fields
| 5.3.4511.1, 10.6.20837499904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | R | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 347 | Data not computed | ||||||