Normalized defining polynomial
\( x^{20} - 4 x^{19} + 5 x^{18} - 45 x^{17} - 53 x^{16} + 483 x^{15} + 210 x^{14} + 4293 x^{13} + 1470 x^{12} - 35376 x^{11} - 47202 x^{10} - 46028 x^{9} + 51083 x^{8} + 238054 x^{7} + 78465 x^{6} - 28625 x^{5} - 71574 x^{4} - 20169 x^{3} - 2093 x^{2} + 2581 x + 193 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(115464362371968140967058305099481=149^{6}\cdot 1481^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $149, 1481$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{10} a^{18} - \frac{3}{10} a^{17} + \frac{1}{10} a^{16} - \frac{1}{10} a^{15} - \frac{1}{2} a^{14} - \frac{1}{10} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} + \frac{3}{10} a^{5} + \frac{3}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{3}{10}$, $\frac{1}{798329844635126512606298457659550936979855060929274370} a^{19} - \frac{5826041238894420930796014927542397396042675298994471}{159665968927025302521259691531910187395971012185854874} a^{18} - \frac{46320880385762854163527958665172052096999258680370683}{798329844635126512606298457659550936979855060929274370} a^{17} - \frac{381992076573526923058038461658405074743619616154316023}{798329844635126512606298457659550936979855060929274370} a^{16} - \frac{294781940434565221702587715645553240946454687944568173}{798329844635126512606298457659550936979855060929274370} a^{15} + \frac{178214961531677552339395209325200718871110607958075239}{798329844635126512606298457659550936979855060929274370} a^{14} - \frac{146198903810747347550575335243454626473986136530931207}{399164922317563256303149228829775468489927530464637185} a^{13} + \frac{3570145764472244137564115073526728670159750999039528}{79832984463512651260629845765955093697985506092927437} a^{12} - \frac{69930385885427829242278213697517113494456185311122881}{399164922317563256303149228829775468489927530464637185} a^{11} + \frac{157026587105563981217662228350739139742902463484603881}{399164922317563256303149228829775468489927530464637185} a^{10} + \frac{140130500782555389925408771888218874261415024298201197}{399164922317563256303149228829775468489927530464637185} a^{9} + \frac{31875417440458681141924032550352388533262686488251484}{399164922317563256303149228829775468489927530464637185} a^{8} + \frac{3405874500705071508569933016887295540193306715206253}{798329844635126512606298457659550936979855060929274370} a^{7} + \frac{87825971605824226793001684895332997769756309372920443}{798329844635126512606298457659550936979855060929274370} a^{6} + \frac{275463341936910574572245774834316663596979018478290297}{798329844635126512606298457659550936979855060929274370} a^{5} - \frac{330122173037244902722543680111130266586974803496272501}{798329844635126512606298457659550936979855060929274370} a^{4} + \frac{87659595881778413691286550048529059402630141215022584}{399164922317563256303149228829775468489927530464637185} a^{3} - \frac{196299984561380317142164276745536427346946378847471986}{399164922317563256303149228829775468489927530464637185} a^{2} - \frac{32130693478296729579860947600206363913982468144425207}{159665968927025302521259691531910187395971012185854874} a - \frac{79604154592567323550816602025221944966148232146819468}{399164922317563256303149228829775468489927530464637185}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 451831490.659 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 30720 |
| The 63 conjugacy class representatives for t20n555 are not computed |
| Character table for t20n555 is not computed |
Intermediate fields
| 5.5.220669.1, 10.6.10745434489678309.2, 10.6.48694807561.1, 10.6.10745434489678309.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $149$ | 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1481 | Data not computed | ||||||