Normalized defining polynomial
\( x^{20} - 20 x^{18} + 190 x^{16} - 1178 x^{14} + 5407 x^{12} - 18472 x^{10} + 43415 x^{8} - 64600 x^{6} + 56375 x^{4} - 23750 x^{2} + 3125 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1154067626962609920750387200000=2^{30}\cdot 5^{5}\cdot 61^{4}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $31.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{8} - \frac{3}{10} a^{6} - \frac{3}{10} a^{4} + \frac{3}{10} a^{2}$, $\frac{1}{10} a^{13} - \frac{1}{2} a^{9} - \frac{3}{10} a^{7} - \frac{3}{10} a^{5} + \frac{3}{10} a^{3}$, $\frac{1}{50} a^{14} - \frac{1}{5} a^{10} - \frac{3}{50} a^{8} + \frac{11}{25} a^{6} + \frac{9}{25} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{100} a^{15} - \frac{1}{20} a^{13} - \frac{1}{20} a^{12} - \frac{1}{10} a^{11} - \frac{1}{4} a^{10} - \frac{7}{25} a^{9} - \frac{1}{4} a^{8} - \frac{13}{100} a^{7} - \frac{1}{10} a^{6} - \frac{17}{100} a^{5} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} - \frac{2}{5} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{500} a^{16} - \frac{1}{100} a^{14} - \frac{1}{20} a^{13} - \frac{1}{50} a^{12} - \frac{1}{4} a^{11} - \frac{39}{250} a^{10} - \frac{1}{4} a^{9} - \frac{13}{500} a^{8} - \frac{1}{10} a^{7} - \frac{167}{500} a^{6} + \frac{2}{5} a^{5} + \frac{8}{25} a^{4} - \frac{2}{5} a^{3} + \frac{7}{20} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{500} a^{17} - \frac{1}{100} a^{14} + \frac{3}{100} a^{13} + \frac{61}{250} a^{11} + \frac{1}{10} a^{10} + \frac{97}{500} a^{9} + \frac{3}{100} a^{8} - \frac{33}{125} a^{7} + \frac{7}{25} a^{6} + \frac{7}{20} a^{5} - \frac{9}{50} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{20213088597500} a^{18} + \frac{4996869}{202130885975} a^{16} + \frac{36422870403}{4042617719500} a^{14} - \frac{1}{20} a^{13} + \frac{990321495747}{20213088597500} a^{12} - \frac{335334923557}{5053272149375} a^{10} - \frac{1}{4} a^{9} - \frac{8793645087707}{20213088597500} a^{8} + \frac{3}{20} a^{7} + \frac{10780430411}{161704708780} a^{6} - \frac{7}{20} a^{5} - \frac{13163181201}{161704708780} a^{4} + \frac{7}{20} a^{3} + \frac{53596894991}{161704708780} a^{2} + \frac{12932339367}{32340941756}$, $\frac{1}{20213088597500} a^{19} + \frac{4996869}{202130885975} a^{17} - \frac{1000826698}{1010654429875} a^{15} - \frac{1}{100} a^{14} - \frac{5083233532}{5053272149375} a^{13} - \frac{1}{20} a^{12} + \frac{339984582761}{10106544298750} a^{11} + \frac{1}{10} a^{10} + \frac{6972564018343}{20213088597500} a^{9} - \frac{11}{50} a^{8} + \frac{100391818983}{202130885975} a^{7} + \frac{43}{100} a^{6} + \frac{78547539907}{202130885975} a^{5} + \frac{47}{100} a^{4} - \frac{11084988521}{161704708780} a^{3} - \frac{2}{5} a^{2} + \frac{1211775982}{8085235439} a - \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36668065.628 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 245760 |
| The 201 conjugacy class representatives for t20n886 are not computed |
| Character table for t20n886 is not computed |
Intermediate fields
| 5.5.24217.1, 10.4.600538203136.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 397 | Data not computed | ||||||