Normalized defining polynomial
\( x^{20} - 3 x^{18} - 4 x^{17} - 6 x^{16} - 32 x^{15} + 56 x^{14} + 40 x^{13} - 29 x^{12} + 232 x^{11} - 134 x^{10} - 82 x^{9} + 119 x^{8} - 59 x^{7} + 80 x^{6} + 3 x^{5} - 30 x^{4} + 4 x^{3} - 9 x^{2} + 3 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(113489345718192064931640625=5^{10}\cdot 3409004107^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 3409004107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} + \frac{8}{43} a^{17} - \frac{4}{43} a^{16} + \frac{3}{43} a^{15} + \frac{20}{43} a^{14} + \frac{19}{43} a^{13} - \frac{17}{43} a^{12} + \frac{2}{43} a^{11} + \frac{17}{43} a^{10} - \frac{20}{43} a^{9} + \frac{20}{43} a^{8} + \frac{2}{43} a^{7} - \frac{4}{43} a^{6} - \frac{6}{43} a^{5} - \frac{9}{43} a^{4} + \frac{20}{43} a^{3} - \frac{16}{43} a^{2} - \frac{5}{43} a + \frac{2}{43}$, $\frac{1}{108436391195777884871} a^{19} - \frac{1097606318157935968}{108436391195777884871} a^{18} - \frac{8851547677722651861}{108436391195777884871} a^{17} - \frac{39242219850338923280}{108436391195777884871} a^{16} + \frac{23968629284607255851}{108436391195777884871} a^{15} + \frac{9934176801115497437}{108436391195777884871} a^{14} + \frac{15081224643316631237}{108436391195777884871} a^{13} - \frac{33569355435852363356}{108436391195777884871} a^{12} - \frac{20528096993099659278}{108436391195777884871} a^{11} - \frac{27146201409913236618}{108436391195777884871} a^{10} - \frac{15199338687990333280}{108436391195777884871} a^{9} - \frac{28296699228353309453}{108436391195777884871} a^{8} - \frac{7817241319044604271}{108436391195777884871} a^{7} + \frac{49085123594459800949}{108436391195777884871} a^{6} - \frac{37878563995231616630}{108436391195777884871} a^{5} - \frac{20118554126782758492}{108436391195777884871} a^{4} + \frac{29139533521119968352}{108436391195777884871} a^{3} + \frac{4462377661990932016}{108436391195777884871} a^{2} - \frac{315174714630156265}{108436391195777884871} a + \frac{2200041797208819971}{108436391195777884871}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 228494.705934 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7257600 |
| The 84 conjugacy class representatives for t20n1021 are not computed |
| Character table for t20n1021 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.4.3409004107.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 3409004107 | Data not computed | ||||||