Properties

Label 20.8.11149939773...5625.1
Degree $20$
Signature $[8, 6]$
Discriminant $5^{10}\cdot 97^{2}\cdot 3319^{4}$
Root discriminant $17.88$
Ramified primes $5, 97, 3319$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T760

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 8, -16, -13, 81, -99, 27, 85, -224, 330, -184, -130, 224, -91, -6, 20, -21, 14, -1, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 3*x^19 - x^18 + 14*x^17 - 21*x^16 + 20*x^15 - 6*x^14 - 91*x^13 + 224*x^12 - 130*x^11 - 184*x^10 + 330*x^9 - 224*x^8 + 85*x^7 + 27*x^6 - 99*x^5 + 81*x^4 - 13*x^3 - 16*x^2 + 8*x - 1)
 
gp: K = bnfinit(x^20 - 3*x^19 - x^18 + 14*x^17 - 21*x^16 + 20*x^15 - 6*x^14 - 91*x^13 + 224*x^12 - 130*x^11 - 184*x^10 + 330*x^9 - 224*x^8 + 85*x^7 + 27*x^6 - 99*x^5 + 81*x^4 - 13*x^3 - 16*x^2 + 8*x - 1, 1)
 

Normalized defining polynomial

\( x^{20} - 3 x^{19} - x^{18} + 14 x^{17} - 21 x^{16} + 20 x^{15} - 6 x^{14} - 91 x^{13} + 224 x^{12} - 130 x^{11} - 184 x^{10} + 330 x^{9} - 224 x^{8} + 85 x^{7} + 27 x^{6} - 99 x^{5} + 81 x^{4} - 13 x^{3} - 16 x^{2} + 8 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(11149939773041205947265625=5^{10}\cdot 97^{2}\cdot 3319^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $17.88$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 97, 3319$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{57} a^{17} + \frac{1}{57} a^{16} + \frac{22}{57} a^{15} + \frac{6}{19} a^{14} + \frac{5}{57} a^{13} - \frac{1}{19} a^{12} + \frac{28}{57} a^{11} - \frac{1}{3} a^{10} + \frac{20}{57} a^{9} + \frac{11}{57} a^{8} + \frac{4}{19} a^{7} - \frac{10}{57} a^{6} + \frac{3}{19} a^{5} - \frac{13}{57} a^{4} - \frac{2}{57} a^{3} - \frac{9}{19} a^{2} + \frac{20}{57} a + \frac{7}{57}$, $\frac{1}{57} a^{18} + \frac{2}{57} a^{16} - \frac{4}{57} a^{15} + \frac{25}{57} a^{14} + \frac{11}{57} a^{13} - \frac{26}{57} a^{12} + \frac{10}{57} a^{11} + \frac{20}{57} a^{10} - \frac{28}{57} a^{9} - \frac{6}{19} a^{8} + \frac{16}{57} a^{7} - \frac{1}{3} a^{6} - \frac{22}{57} a^{5} + \frac{11}{57} a^{4} - \frac{2}{19} a^{3} + \frac{3}{19} a^{2} + \frac{25}{57} a - \frac{26}{57}$, $\frac{1}{9805336707} a^{19} - \frac{80420005}{9805336707} a^{18} - \frac{14581244}{9805336707} a^{17} + \frac{1562594411}{9805336707} a^{16} - \frac{460940291}{9805336707} a^{15} - \frac{3938310281}{9805336707} a^{14} - \frac{380621266}{3268445569} a^{13} - \frac{669215217}{3268445569} a^{12} - \frac{1133177172}{3268445569} a^{11} + \frac{3553441687}{9805336707} a^{10} + \frac{1981420484}{9805336707} a^{9} + \frac{70410017}{516070353} a^{8} - \frac{1865314331}{9805336707} a^{7} - \frac{1281949136}{9805336707} a^{6} - \frac{459536672}{3268445569} a^{5} + \frac{2443166669}{9805336707} a^{4} + \frac{3910008680}{9805336707} a^{3} + \frac{3602786455}{9805336707} a^{2} - \frac{3743484014}{9805336707} a + \frac{4010606353}{9805336707}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 62751.6666339 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T760:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n760 are not computed
Character table for t20n760 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.6.34424253125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{3}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$97$97.4.2.1$x^{4} + 873 x^{2} + 235225$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.8.0.1$x^{8} - x + 84$$1$$8$$0$$C_8$$[\ ]^{8}$
97.8.0.1$x^{8} - x + 84$$1$$8$$0$$C_8$$[\ ]^{8}$
3319Data not computed