Normalized defining polynomial
\( x^{20} + 2 x^{18} - 4 x^{17} - 50 x^{16} - 8 x^{15} - 236 x^{14} - 344 x^{13} + 842 x^{12} - 272 x^{11} - 1668 x^{10} + 2472 x^{9} + 1736 x^{8} - 3456 x^{7} - 904 x^{6} + 2256 x^{5} + 208 x^{4} - 736 x^{3} + 96 x - 8 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(11043582468423783283165921017856=2^{52}\cdot 31^{4}\cdot 227^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 227$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{4} a^{16}$, $\frac{1}{4} a^{17}$, $\frac{1}{124} a^{18} - \frac{2}{31} a^{17} - \frac{7}{124} a^{16} - \frac{15}{124} a^{15} - \frac{2}{31} a^{14} + \frac{1}{31} a^{13} + \frac{3}{62} a^{12} - \frac{1}{62} a^{11} - \frac{7}{62} a^{10} - \frac{7}{62} a^{9} + \frac{6}{31} a^{8} - \frac{23}{62} a^{7} - \frac{5}{31} a^{6} + \frac{15}{31} a^{4} + \frac{10}{31} a^{3} - \frac{7}{31} a^{2} + \frac{10}{31} a - \frac{3}{31}$, $\frac{1}{18961350460378150803192} a^{19} - \frac{4579400024743603075}{4740337615094537700798} a^{18} + \frac{185573259016917467945}{3160225076729691800532} a^{17} - \frac{17079192798779846443}{249491453426028300042} a^{16} - \frac{585669350708586522251}{9480675230189075401596} a^{15} + \frac{146256342957425353231}{2370168807547268850399} a^{14} + \frac{1756098722364587405293}{9480675230189075401596} a^{13} + \frac{608204821065917452931}{4740337615094537700798} a^{12} - \frac{224698738706178504551}{3160225076729691800532} a^{11} - \frac{302579618330705882023}{2370168807547268850399} a^{10} + \frac{636998158995878965553}{4740337615094537700798} a^{9} - \frac{336846656158053076631}{4740337615094537700798} a^{8} + \frac{351229342692310629727}{4740337615094537700798} a^{7} - \frac{1171553204530963263557}{2370168807547268850399} a^{6} + \frac{600328312337323733203}{1580112538364845900266} a^{5} + \frac{70693139725094977853}{790056269182422950133} a^{4} - \frac{906640832292675949834}{2370168807547268850399} a^{3} - \frac{348021025321459567153}{2370168807547268850399} a^{2} + \frac{656830324712691006394}{2370168807547268850399} a - \frac{1017187123515859089613}{2370168807547268850399}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 379314385.837 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 216 conjugacy class representatives for t20n1025 are not computed |
| Character table for t20n1025 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 10.10.207699287474176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | $16{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.8.0.1}{8} }$ | $16{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | R | $16{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.26.1 | $x^{8} + 4 x^{6} + 8 x^{3} + 8 x^{2} + 2$ | $8$ | $1$ | $26$ | $C_2^2:C_4$ | $[2, 3, 7/2, 4]$ |
| 2.12.26.27 | $x^{12} - 2 x^{10} + 4 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{3} + 2$ | $12$ | $1$ | $26$ | 12T48 | $[4/3, 4/3, 2, 3]_{3}^{2}$ | |
| 31 | Data not computed | ||||||
| 227 | Data not computed | ||||||