Normalized defining polynomial
\( x^{20} - 6 x^{19} + 9 x^{18} + 20 x^{17} - 110 x^{16} + 142 x^{15} + 149 x^{14} - 636 x^{13} + 717 x^{12} + 462 x^{11} - 1495 x^{10} + 1606 x^{9} + 479 x^{8} - 1158 x^{7} + 2199 x^{6} + 32 x^{5} + 253 x^{4} + 2216 x^{3} + 498 x^{2} + 34 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10779662339431083287111532544=2^{20}\cdot 11^{18}\cdot 43^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{43} a^{17} - \frac{7}{43} a^{16} - \frac{20}{43} a^{15} + \frac{1}{43} a^{14} - \frac{20}{43} a^{13} + \frac{12}{43} a^{12} + \frac{7}{43} a^{11} + \frac{15}{43} a^{10} + \frac{11}{43} a^{9} - \frac{19}{43} a^{8} - \frac{2}{43} a^{7} - \frac{6}{43} a^{6} - \frac{20}{43} a^{5} + \frac{4}{43} a^{4} + \frac{17}{43} a^{3} + \frac{15}{43} a^{2} + \frac{10}{43} a - \frac{13}{43}$, $\frac{1}{5633} a^{18} - \frac{27}{5633} a^{17} - \frac{353}{5633} a^{16} - \frac{889}{5633} a^{15} + \frac{132}{5633} a^{14} - \frac{1394}{5633} a^{13} - \frac{2684}{5633} a^{12} + \frac{2240}{5633} a^{11} + \frac{1474}{5633} a^{10} - \frac{1959}{5633} a^{9} - \frac{52}{5633} a^{8} + \frac{1840}{5633} a^{7} + \frac{2680}{5633} a^{6} + \frac{1178}{5633} a^{5} - \frac{2299}{5633} a^{4} - \frac{540}{5633} a^{3} + \frac{2763}{5633} a^{2} + \frac{1894}{5633} a + \frac{2238}{5633}$, $\frac{1}{1365901877077597167373427} a^{19} - \frac{51290132909967556733}{1365901877077597167373427} a^{18} + \frac{167837164062521534925}{31765159932037143427289} a^{17} + \frac{119150902925897104877327}{1365901877077597167373427} a^{16} + \frac{514118880683211111656706}{1365901877077597167373427} a^{15} - \frac{591520680873434067657247}{1365901877077597167373427} a^{14} - \frac{620844922826061178215505}{1365901877077597167373427} a^{13} + \frac{532266302456658440778815}{1365901877077597167373427} a^{12} - \frac{614493272412194714284822}{1365901877077597167373427} a^{11} + \frac{320964369793512299414128}{1365901877077597167373427} a^{10} - \frac{629554057880179297119973}{1365901877077597167373427} a^{9} + \frac{348992492962406168532606}{1365901877077597167373427} a^{8} - \frac{607592436391135565441502}{1365901877077597167373427} a^{7} + \frac{385983136612051825027785}{1365901877077597167373427} a^{6} + \frac{226564663065717597804602}{1365901877077597167373427} a^{5} + \frac{53129859266551582871191}{1365901877077597167373427} a^{4} - \frac{462496197607465277997756}{1365901877077597167373427} a^{3} + \frac{421079663543285456907532}{1365901877077597167373427} a^{2} + \frac{11841298677510904410340}{31765159932037143427289} a + \frac{361747588368472850754731}{1365901877077597167373427}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2564218.97596 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |