Normalized defining polynomial
\( x^{20} - 5 x^{18} - 19 x^{16} - 22 x^{15} + 51 x^{14} - 132 x^{13} + 20 x^{12} + 924 x^{11} - 89 x^{10} - 1804 x^{9} + 731 x^{8} + 2926 x^{7} - 256 x^{6} - 2288 x^{5} - 227 x^{4} + 946 x^{3} + 277 x^{2} - 110 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10779662339431083287111532544=2^{20}\cdot 11^{18}\cdot 43^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{89} a^{17} + \frac{8}{89} a^{16} + \frac{33}{89} a^{15} - \frac{5}{89} a^{14} + \frac{19}{89} a^{13} + \frac{27}{89} a^{12} - \frac{11}{89} a^{11} - \frac{34}{89} a^{10} - \frac{11}{89} a^{9} - \frac{12}{89} a^{8} + \frac{39}{89} a^{7} + \frac{25}{89} a^{6} + \frac{26}{89} a^{5} + \frac{16}{89} a^{4} - \frac{15}{89} a^{3} + \frac{40}{89} a^{2} + \frac{41}{89} a - \frac{8}{89}$, $\frac{1}{3827} a^{18} + \frac{1}{3827} a^{17} + \frac{1401}{3827} a^{16} - \frac{1838}{3827} a^{15} + \frac{588}{3827} a^{14} + \frac{1229}{3827} a^{13} + \frac{1046}{3827} a^{12} + \frac{1467}{3827} a^{11} - \frac{1375}{3827} a^{10} - \frac{736}{3827} a^{9} + \frac{924}{3827} a^{8} - \frac{337}{3827} a^{7} - \frac{416}{3827} a^{6} - \frac{1501}{3827} a^{5} + \frac{1831}{3827} a^{4} + \frac{1035}{3827} a^{3} + \frac{28}{3827} a^{2} + \frac{1663}{3827} a + \frac{22}{89}$, $\frac{1}{75611712444368176561} a^{19} + \frac{8846996360004229}{75611712444368176561} a^{18} - \frac{295126463007135742}{75611712444368176561} a^{17} - \frac{19676882708672206726}{75611712444368176561} a^{16} + \frac{35885986802682935231}{75611712444368176561} a^{15} - \frac{2699692291651534753}{75611712444368176561} a^{14} - \frac{8617554806107782132}{75611712444368176561} a^{13} - \frac{36351496475057954949}{75611712444368176561} a^{12} + \frac{5258215220839431707}{75611712444368176561} a^{11} + \frac{6530331104858361032}{75611712444368176561} a^{10} + \frac{1910510432706900306}{75611712444368176561} a^{9} - \frac{31539579982855565964}{75611712444368176561} a^{8} + \frac{8714352614914811485}{75611712444368176561} a^{7} + \frac{12653129395457433985}{75611712444368176561} a^{6} - \frac{1377286614926734722}{75611712444368176561} a^{5} - \frac{31602012164209242590}{75611712444368176561} a^{4} - \frac{34987177611677818951}{75611712444368176561} a^{3} - \frac{34418288642265288555}{75611712444368176561} a^{2} - \frac{15345723744933310959}{75611712444368176561} a - \frac{747706120140470859}{1758411917310887827}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2536535.5255 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 80 conjugacy class representatives for t20n340 are not computed |
| Character table for t20n340 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 11 | Data not computed | ||||||
| 43 | Data not computed | ||||||