Normalized defining polynomial
\( x^{20} - 6 x^{19} + 8 x^{18} + 10 x^{17} - 9 x^{16} - 72 x^{15} + 178 x^{14} - 130 x^{13} - 431 x^{12} + 924 x^{11} + 100 x^{10} - 682 x^{9} - 1029 x^{8} + 1158 x^{7} + 1008 x^{6} - 1534 x^{5} - 408 x^{4} + 2346 x^{3} - 1904 x^{2} + 516 x - 43 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(10779662339431083287111532544=2^{20}\cdot 11^{18}\cdot 43^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{110} a^{15} - \frac{12}{55} a^{14} + \frac{2}{11} a^{13} - \frac{21}{110} a^{12} + \frac{21}{110} a^{10} + \frac{21}{55} a^{9} + \frac{7}{110} a^{8} - \frac{19}{110} a^{7} - \frac{49}{110} a^{6} + \frac{9}{22} a^{5} - \frac{1}{5} a^{4} - \frac{5}{22} a^{3} + \frac{1}{110} a^{2} - \frac{26}{55} a - \frac{6}{55}$, $\frac{1}{110} a^{16} - \frac{3}{55} a^{14} + \frac{19}{110} a^{13} - \frac{9}{110} a^{12} + \frac{21}{110} a^{11} - \frac{2}{55} a^{10} + \frac{5}{22} a^{9} + \frac{39}{110} a^{8} + \frac{9}{22} a^{7} - \frac{31}{110} a^{6} - \frac{21}{55} a^{5} + \frac{26}{55} a^{4} - \frac{49}{110} a^{3} + \frac{27}{110} a^{2} - \frac{5}{11} a - \frac{13}{110}$, $\frac{1}{110} a^{17} - \frac{3}{22} a^{14} + \frac{1}{110} a^{13} + \frac{1}{22} a^{12} - \frac{2}{55} a^{11} - \frac{7}{55} a^{10} - \frac{39}{110} a^{9} + \frac{16}{55} a^{8} - \frac{7}{22} a^{7} + \frac{49}{110} a^{6} - \frac{4}{55} a^{5} - \frac{8}{55} a^{4} - \frac{13}{110} a^{3} - \frac{2}{5} a^{2} + \frac{1}{22} a - \frac{17}{110}$, $\frac{1}{110} a^{18} + \frac{13}{55} a^{14} - \frac{5}{22} a^{13} + \frac{1}{10} a^{12} - \frac{7}{55} a^{11} + \frac{1}{110} a^{10} + \frac{1}{55} a^{9} + \frac{3}{22} a^{8} - \frac{8}{55} a^{7} + \frac{27}{110} a^{6} - \frac{1}{110} a^{5} - \frac{13}{110} a^{4} + \frac{21}{110} a^{3} - \frac{7}{22} a^{2} - \frac{27}{110} a - \frac{3}{22}$, $\frac{1}{219364338066481497670} a^{19} + \frac{29402839976618828}{9971106275749158985} a^{18} - \frac{75269622554929861}{43872867613296299534} a^{17} + \frac{366173980992004409}{109682169033240748835} a^{16} + \frac{60318848864497}{43872867613296299534} a^{15} + \frac{17386084593075841047}{219364338066481497670} a^{14} - \frac{21475548461666031387}{219364338066481497670} a^{13} - \frac{271668314949746042}{109682169033240748835} a^{12} - \frac{5992158247983549913}{43872867613296299534} a^{11} - \frac{3609633408326892170}{21936433806648149767} a^{10} + \frac{3841545439769879977}{21936433806648149767} a^{9} + \frac{18155459908482506837}{109682169033240748835} a^{8} + \frac{17084369112580823935}{43872867613296299534} a^{7} + \frac{102592382398643887987}{219364338066481497670} a^{6} - \frac{11276265794774634119}{43872867613296299534} a^{5} - \frac{80091492637791709189}{219364338066481497670} a^{4} - \frac{30532321312195858073}{109682169033240748835} a^{3} + \frac{65867176608045983403}{219364338066481497670} a^{2} - \frac{1456158794795323167}{43872867613296299534} a - \frac{42833668836394222211}{109682169033240748835}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2808419.53416 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2560 |
| The 40 conjugacy class representatives for t20n262 |
| Character table for t20n262 is not computed |
Intermediate fields
| \(\Q(\sqrt{11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.1.1 | $x^{2} - 43$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |