Properties

Label 20.8.10697565742...3125.2
Degree $20$
Signature $[8, 6]$
Discriminant $5^{15}\cdot 19^{5}\cdot 1699^{5}$
Root discriminant $44.82$
Ramified primes $5, 19, 1699$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T771

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-4889, -3930, 120463, 118979, -296334, 64335, 308850, -472480, 173576, 81686, -117590, 49587, -1119, -5921, 2577, -84, -119, 60, 5, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 5*x^18 + 60*x^17 - 119*x^16 - 84*x^15 + 2577*x^14 - 5921*x^13 - 1119*x^12 + 49587*x^11 - 117590*x^10 + 81686*x^9 + 173576*x^8 - 472480*x^7 + 308850*x^6 + 64335*x^5 - 296334*x^4 + 118979*x^3 + 120463*x^2 - 3930*x - 4889)
 
gp: K = bnfinit(x^20 - 2*x^19 + 5*x^18 + 60*x^17 - 119*x^16 - 84*x^15 + 2577*x^14 - 5921*x^13 - 1119*x^12 + 49587*x^11 - 117590*x^10 + 81686*x^9 + 173576*x^8 - 472480*x^7 + 308850*x^6 + 64335*x^5 - 296334*x^4 + 118979*x^3 + 120463*x^2 - 3930*x - 4889, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} + 5 x^{18} + 60 x^{17} - 119 x^{16} - 84 x^{15} + 2577 x^{14} - 5921 x^{13} - 1119 x^{12} + 49587 x^{11} - 117590 x^{10} + 81686 x^{9} + 173576 x^{8} - 472480 x^{7} + 308850 x^{6} + 64335 x^{5} - 296334 x^{4} + 118979 x^{3} + 120463 x^{2} - 3930 x - 4889 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[8, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1069756574259831337445098876953125=5^{15}\cdot 19^{5}\cdot 1699^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $44.82$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 19, 1699$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{29} a^{18} - \frac{14}{29} a^{17} - \frac{8}{29} a^{16} - \frac{7}{29} a^{15} - \frac{8}{29} a^{14} + \frac{3}{29} a^{13} - \frac{13}{29} a^{12} + \frac{14}{29} a^{11} - \frac{7}{29} a^{10} + \frac{12}{29} a^{9} - \frac{3}{29} a^{8} + \frac{3}{29} a^{7} - \frac{4}{29} a^{6} - \frac{14}{29} a^{5} - \frac{7}{29} a^{4} - \frac{8}{29} a^{3} - \frac{12}{29} a^{2} - \frac{11}{29} a + \frac{10}{29}$, $\frac{1}{1337985166006905283745608578145233322369978456984642840339} a^{19} + \frac{10352707755991034143451891531201154125893910463878619931}{1337985166006905283745608578145233322369978456984642840339} a^{18} + \frac{279753143663337127450219562986545123484698386239791325793}{1337985166006905283745608578145233322369978456984642840339} a^{17} - \frac{356865124452587444158120909070505121793795436280210039011}{1337985166006905283745608578145233322369978456984642840339} a^{16} - \frac{65343477798386311658694344362632326875610420863491056684}{1337985166006905283745608578145233322369978456984642840339} a^{15} + \frac{23820741992586303625557631778508100834798994404076287129}{1337985166006905283745608578145233322369978456984642840339} a^{14} - \frac{87006493794035378576298423733040083904159693932266508906}{1337985166006905283745608578145233322369978456984642840339} a^{13} - \frac{413113126062113000658832947332298828533700178062059125236}{1337985166006905283745608578145233322369978456984642840339} a^{12} + \frac{472495573597089771014112359880368412688946627771804942547}{1337985166006905283745608578145233322369978456984642840339} a^{11} + \frac{367552836666186351460104796760696992650689748024839290717}{1337985166006905283745608578145233322369978456984642840339} a^{10} - \frac{359270763640229101228823123750673008976088433318816250913}{1337985166006905283745608578145233322369978456984642840339} a^{9} - \frac{143206278380446606859642661280289154247126903924470847326}{1337985166006905283745608578145233322369978456984642840339} a^{8} - \frac{5289506136302571315001284803612297675157970666241656270}{1337985166006905283745608578145233322369978456984642840339} a^{7} + \frac{500278283594653257967064083394631241053483330499747324577}{1337985166006905283745608578145233322369978456984642840339} a^{6} + \frac{21816007463769733662240069191853329360806452419931442081}{1337985166006905283745608578145233322369978456984642840339} a^{5} - \frac{429338943512794433654944573936104536065214232939869635587}{1337985166006905283745608578145233322369978456984642840339} a^{4} + \frac{500502860721856724742822246199491611509202759595349923368}{1337985166006905283745608578145233322369978456984642840339} a^{3} + \frac{103543998146098645078442546358242691317158618902996412091}{1337985166006905283745608578145233322369978456984642840339} a^{2} + \frac{315275172734461851704183400255010465150211301921926974858}{1337985166006905283745608578145233322369978456984642840339} a + \frac{37646001978262214168094690216205139248111962707408140938}{1337985166006905283745608578145233322369978456984642840339}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $13$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 905470208.461 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T771:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 102400
The 130 conjugacy class representatives for t20n771 are not computed
Character table for t20n771 is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 10.10.3256446753125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20$ $20$ R $20$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ R $20$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ $20$ ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$19$$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
$\Q_{19}$$x + 4$$1$$1$$0$Trivial$[\ ]$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.1.1$x^{2} - 19$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.4.3.2$x^{4} - 19$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
1699Data not computed