Normalized defining polynomial
\( x^{20} - 3 x^{19} - 10 x^{18} + 88 x^{17} - 230 x^{16} - 47 x^{15} + 1830 x^{14} - 7056 x^{13} + 13375 x^{12} - 8135 x^{11} - 39538 x^{10} + 76702 x^{9} - 562 x^{8} - 139480 x^{7} - 41661 x^{6} + 317140 x^{5} - 56704 x^{4} - 129410 x^{3} + 49289 x^{2} + 8361 x - 4639 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1069756574259831337445098876953125=5^{15}\cdot 19^{5}\cdot 1699^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $44.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 19, 1699$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{17} a^{18} - \frac{6}{17} a^{17} - \frac{4}{17} a^{16} + \frac{2}{17} a^{15} - \frac{1}{17} a^{14} + \frac{6}{17} a^{12} - \frac{2}{17} a^{11} - \frac{2}{17} a^{10} + \frac{4}{17} a^{9} - \frac{1}{17} a^{8} + \frac{4}{17} a^{7} - \frac{1}{17} a^{6} - \frac{6}{17} a^{5} + \frac{2}{17} a^{4} + \frac{3}{17} a^{3} - \frac{8}{17} a^{2} - \frac{1}{17} a + \frac{3}{17}$, $\frac{1}{951833899532909389068569986419201180532554017131408783127} a^{19} + \frac{19941170261658397969386888922113754199740268746394389742}{951833899532909389068569986419201180532554017131408783127} a^{18} + \frac{258254321555693077502068142842085418642892070439151539161}{951833899532909389068569986419201180532554017131408783127} a^{17} + \frac{230011123905144364530984134800686757192026292879742084853}{951833899532909389068569986419201180532554017131408783127} a^{16} - \frac{417592915625636907286934912205236883079542901784227269135}{951833899532909389068569986419201180532554017131408783127} a^{15} - \frac{223447279566691182223062590346856865406105142114467060313}{951833899532909389068569986419201180532554017131408783127} a^{14} - \frac{276406771326058909437491579077309122139854105787634590370}{951833899532909389068569986419201180532554017131408783127} a^{13} + \frac{45096793299467057231182562968997220662790207029240780308}{951833899532909389068569986419201180532554017131408783127} a^{12} + \frac{48689351153755254822086816209702374013550462726835378385}{951833899532909389068569986419201180532554017131408783127} a^{11} - \frac{392447835700288209403907509463427154825800760296896224284}{951833899532909389068569986419201180532554017131408783127} a^{10} - \frac{187444988775518331502062710969274999761495386001776406629}{951833899532909389068569986419201180532554017131408783127} a^{9} + \frac{342195406230043694736349915196494719721718428939075911464}{951833899532909389068569986419201180532554017131408783127} a^{8} + \frac{119890633138117480703878705916198460563131287421827192225}{951833899532909389068569986419201180532554017131408783127} a^{7} + \frac{319477924006389297076067911432482975730642062977225575948}{951833899532909389068569986419201180532554017131408783127} a^{6} - \frac{206080090049427965234724192547003322900177768123475364279}{951833899532909389068569986419201180532554017131408783127} a^{5} + \frac{404200625710528724612797551160633403614780170643284271046}{951833899532909389068569986419201180532554017131408783127} a^{4} + \frac{223022609286287612456762999336252126569316463513168339223}{951833899532909389068569986419201180532554017131408783127} a^{3} - \frac{142750421028936863518898682701473988080191081007565438631}{951833899532909389068569986419201180532554017131408783127} a^{2} - \frac{14704499151132675855224899771182196395429684811304436377}{55990229384288787592268822730541245913679648066553457831} a - \frac{419110170743860053930737158189496812726472930728211412839}{951833899532909389068569986419201180532554017131408783127}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 909672090.839 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 102400 |
| The 130 conjugacy class representatives for t20n771 are not computed |
| Character table for t20n771 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.10.3256446753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1699 | Data not computed | ||||||