Normalized defining polynomial
\( x^{20} - 2 x^{19} - 29 x^{18} - 37 x^{17} + 223 x^{16} + 2033 x^{15} + 183 x^{14} - 11230 x^{13} + 18547 x^{12} - 86592 x^{11} - 332923 x^{10} + 372539 x^{9} - 591011 x^{8} - 1209547 x^{7} + 5897933 x^{6} + 690636 x^{5} + 994948 x^{4} + 16017428 x^{3} - 4643676 x^{2} - 34530300 x - 31131268 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(104998320447888184347713805079613092096=2^{8}\cdot 11^{10}\cdot 29^{6}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{20} a^{15} - \frac{1}{20} a^{14} - \frac{1}{20} a^{13} - \frac{1}{10} a^{11} - \frac{1}{20} a^{10} + \frac{7}{20} a^{9} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{1}{2} a^{5} + \frac{1}{10} a^{4} + \frac{3}{20} a^{3} - \frac{1}{10} a^{2} - \frac{2}{5} a - \frac{1}{10}$, $\frac{1}{40} a^{16} + \frac{3}{40} a^{14} - \frac{1}{40} a^{13} - \frac{1}{20} a^{12} - \frac{3}{40} a^{11} - \frac{1}{10} a^{10} - \frac{1}{8} a^{9} + \frac{17}{40} a^{8} - \frac{11}{40} a^{7} - \frac{1}{8} a^{6} + \frac{3}{10} a^{5} - \frac{1}{4} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10}$, $\frac{1}{40} a^{17} - \frac{1}{40} a^{15} + \frac{3}{40} a^{14} + \frac{1}{20} a^{13} - \frac{3}{40} a^{12} + \frac{1}{10} a^{11} - \frac{1}{40} a^{10} - \frac{11}{40} a^{9} - \frac{3}{40} a^{8} + \frac{19}{40} a^{7} + \frac{3}{10} a^{6} - \frac{1}{4} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{80} a^{18} - \frac{1}{80} a^{15} + \frac{9}{80} a^{14} - \frac{1}{8} a^{13} - \frac{1}{10} a^{12} + \frac{1}{20} a^{11} - \frac{1}{80} a^{10} - \frac{13}{40} a^{9} - \frac{1}{5} a^{8} - \frac{7}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{2} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{4} a + \frac{9}{20}$, $\frac{1}{1786929814888070538841289951366471225843318940199760374771576496800} a^{19} + \frac{9002112765168889404093146149098913760388286963021855895336854407}{1786929814888070538841289951366471225843318940199760374771576496800} a^{18} + \frac{9241480807789836933686774907495639630384138379974162614394509927}{893464907444035269420644975683235612921659470099880187385788248400} a^{17} - \frac{10676901272216256498519017024778670817463974757970194917888496631}{1786929814888070538841289951366471225843318940199760374771576496800} a^{16} + \frac{2230866478492981766634541548750950049343741835741132933933286169}{111683113430504408677580621960404451615207433762485023423223531050} a^{15} + \frac{19165673662398857594763237055656130906794232787302471375062066709}{1786929814888070538841289951366471225843318940199760374771576496800} a^{14} - \frac{17042192673515376565239180614706498519492799122741064537957961387}{223366226861008817355161243920808903230414867524970046846447062100} a^{13} + \frac{36508358813138204976431587946003658001018873256790332115830088053}{893464907444035269420644975683235612921659470099880187385788248400} a^{12} + \frac{89624347814245407269488797420549635067751165709840641964511031061}{1786929814888070538841289951366471225843318940199760374771576496800} a^{11} + \frac{62981272412261057730690351986008605861379643513510912141120546877}{1786929814888070538841289951366471225843318940199760374771576496800} a^{10} - \frac{62671829009794211446497615765854024695065106714473467268757533929}{178692981488807053884128995136647122584331894019976037477157649680} a^{9} + \frac{839141489501081260025255070413984846531754452623722414512775404049}{1786929814888070538841289951366471225843318940199760374771576496800} a^{8} + \frac{65535579136848107264361832451513410725046864112970132339206477811}{178692981488807053884128995136647122584331894019976037477157649680} a^{7} + \frac{671341791625908519773267500446824238626009875342836248998126370983}{1786929814888070538841289951366471225843318940199760374771576496800} a^{6} + \frac{1076221636911006163587898119554125989504662711047202260007199569}{22336622686100881735516124392080890323041486752497004684644706210} a^{5} - \frac{20784582480713616967676124836439404719276148670512819215937746041}{446732453722017634710322487841617806460829735049940093692894124200} a^{4} + \frac{2341259213976276835399445892673369863456584010812806523691598856}{55841556715252204338790310980202225807603716881242511711611765525} a^{3} + \frac{14765838578598421160838897475761613031630858830574072679115129977}{63818921960288233530046069691659686637261390721420013384699160600} a^{2} + \frac{26511165316790919262926855470013884767156507663602384790722515593}{111683113430504408677580621960404451615207433762485023423223531050} a - \frac{9113964545307634657558128917358478537041441171651050580668428641}{63818921960288233530046069691659686637261390721420013384699160600}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 889185133551 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 90 conjugacy class representatives for t20n685 are not computed |
| Character table for t20n685 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.10.1107649855354064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.12.10.1 | $x^{12} + 3146 x^{6} + 14235529$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $113$ | 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |