Normalized defining polynomial
\( x^{20} - 5 x^{19} - 20 x^{18} + 121 x^{17} - 496 x^{16} + 575 x^{15} + 4920 x^{14} + 1993 x^{13} + 8582 x^{12} + 70505 x^{11} + 16138 x^{10} - 913337 x^{9} - 1607591 x^{8} - 452270 x^{7} + 5400288 x^{6} + 14324844 x^{5} + 10554156 x^{4} - 14248548 x^{3} - 34304492 x^{2} - 23378904 x - 5242576 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[8, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(104998320447888184347713805079613092096=2^{8}\cdot 11^{10}\cdot 29^{6}\cdot 113^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 29, 113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{3}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{3}{8} a^{9} - \frac{1}{8} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{18} + \frac{1}{16} a^{15} - \frac{1}{16} a^{14} - \frac{1}{8} a^{13} + \frac{1}{8} a^{12} - \frac{3}{16} a^{11} - \frac{3}{16} a^{10} + \frac{1}{8} a^{9} + \frac{1}{4} a^{8} - \frac{3}{16} a^{7} + \frac{1}{4} a^{6} + \frac{3}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{143221853296322419899952165691607663720435748359076473377827439397914096} a^{19} + \frac{2175307104658391904453539125979306177678224847890616369144406860048127}{71610926648161209949976082845803831860217874179538236688913719698957048} a^{18} + \frac{2141563070379919094449606033099722393161074446652625673785975105167687}{35805463324080604974988041422901915930108937089769118344456859849478524} a^{17} + \frac{202156558144253017938726726881718490792819688759227964945300080747939}{143221853296322419899952165691607663720435748359076473377827439397914096} a^{16} - \frac{16979239033253896239985523178227699637852890726391507587673795095497751}{143221853296322419899952165691607663720435748359076473377827439397914096} a^{15} + \frac{606916596610491784572271490034913863415553525334742580340552167528255}{8951365831020151243747010355725478982527234272442279586114214962369631} a^{14} - \frac{266311613635936826958165634744799893434694559988843803704776663427943}{8951365831020151243747010355725478982527234272442279586114214962369631} a^{13} + \frac{17970452839461367697217932736892568197361582540582126394913936056026635}{143221853296322419899952165691607663720435748359076473377827439397914096} a^{12} - \frac{21091774589440784425839637877821748446426085992222544943805104415444613}{143221853296322419899952165691607663720435748359076473377827439397914096} a^{11} - \frac{7229451267797140714101498491651434329838464854184088959982792355810791}{35805463324080604974988041422901915930108937089769118344456859849478524} a^{10} + \frac{30607097647193172192442728409297883653838948282008194299678060703492825}{71610926648161209949976082845803831860217874179538236688913719698957048} a^{9} - \frac{25799061709824772308994687778458171583907480453147421075042450917276789}{143221853296322419899952165691607663720435748359076473377827439397914096} a^{8} + \frac{3021618219434622654627769950506266953005017836350049323607226182994175}{10230132378308744278568011835114833122888267739934033812701959956993864} a^{7} + \frac{208851143662168119396453263222679669146135575773654481765026592845973}{10230132378308744278568011835114833122888267739934033812701959956993864} a^{6} + \frac{4390361932879713869180709223700775449234922928949450240705815778620277}{8951365831020151243747010355725478982527234272442279586114214962369631} a^{5} - \frac{496066823552914232586798656255599314318473490041002168277543975819129}{1556759274960026303260349627082691996961258134337787754106819993455588} a^{4} - \frac{897942356933130827756994028683324193420324331018184410469882612184673}{5115066189154372139284005917557416561444133869967016906350979978496932} a^{3} + \frac{6111671354343715526404551765590105004982345720031331363999144237612271}{35805463324080604974988041422901915930108937089769118344456859849478524} a^{2} + \frac{203032714412575840240020094981243459889227896145625536279895994895798}{8951365831020151243747010355725478982527234272442279586114214962369631} a - \frac{302375470715846884410822179382606791810412133177089996961261494853564}{8951365831020151243747010355725478982527234272442279586114214962369631}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $13$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1305221628720 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 90 conjugacy class representatives for t20n685 are not computed |
| Character table for t20n685 is not computed |
Intermediate fields
| 5.5.6180196.1, 10.10.1107649855354064.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 11.12.10.1 | $x^{12} + 3146 x^{6} + 14235529$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.6.3.2 | $x^{6} - 841 x^{2} + 73167$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $113$ | 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.2.0.1 | $x^{2} - x + 10$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 113.6.4.1 | $x^{6} + 3277 x^{3} + 12769000$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |